Adaptation and Validation of the ChatGPT Usage Scale in Indonesia: Exploring Challenges of High Usage Among Students

Authors

DOI:

https://doi.org/10.33394/jk.v11i4.18058

Keywords:

ChatGPT, Scale Adaptation, Confirmatory Factor Analysis, ChatGPT Usage, Indonesian Students

Abstract

This study aims to adapt and validate the ChatGPT Usage Scale among Indonesian university students. Using a quantitative psychometric approach, data were collected from 542 active university students across Indonesia selected through convenience sampling. The adaptation followed the International Test Commission (2017) guidelines. Content validity using Aiken’s V showed a high value (0.894). The initial Confirmatory Factor Analysis (CFA) indicated poor fit (CFI = 0.741; TLI = 0.698), but after removing eight items with factor loadings below 0.40, the seven-item model achieved good fit (CFI = 0.949; TLI = 0.924; RMSEA = 0.056; SRMR = 0.034). The Cronbach’s Alpha coefficient (0.703) indicated acceptable reliability. Findings revealed that the original three-dimensions structure (Academic Writing Aid, Academic Task Support, and Reliance and Trust) was not fully supported in the Indonesian student context. The Reliance and Trust dimension could not be retained due to insufficient valid indicators. Despite achieving a statistically fit model, the adapted version remains conceptually limited and requires further refinement to comprehensively capture ChatGPT usage behavior among Indonesian students. Indonesian students primarily use ChatGPT instrumentally with limited trust, highlighting the need for higher education institutions to integrate AI literacy, ethical usage guidelines, and reflective learning practices. Furthermore, the adapted scale provides a foundation for future research to better understand AI utilization in academic contexts.

References

Akhyar, M., Zakir, S., Gusli, R. A., & Fuad, R. (2023). Pemanfaatan artificial intelligence (AI) Perflexity AI dalam penulisan tugas mahasiswa pascasarjana. Journal of Management in Islamic Education, 4(2), 219–228. https://doi.org/10.32832/idarah.v4i2.15435

Ali, D., Fatemi, Y., Boskabadi, E., Nikfar, M., Ugwuoke, J., & Ali, H. (2024). ChatGPT in teaching and learning: A systematic review. Education Sciences, 14(6), 1–18. https://doi.org/10.3390/educsci14060643

Ali, M. K., Ali, A. M., & Hasanah, A. (2024). Efektivitas fitur ChatGPT, Gemini dan Claude AI dalam membantu guru membuat bahan ajar. PEDAGOGIC: Indonesian Journal of Science Education and Technology, 4(1), 58–71. https://doi.org/10.54373/ijset.v4i1.1649

Auna, H. S., Polamolo, C., Auna, I. S., Ma’ruf, A. R. K., & Darojat, A. (2025). Economic education students’ perspectives on AI utilization in learning: A descriptive study. Pedagogi: Jurnal Ilmu Pendidikan, 25(1), 206–216. https://doi.org/10.24036/pedagogi.v25i1.2496

Azwar, S. (2012). Reliabilitas dan validitas. Pustaka Pelajar.

Babu, O., & Wening, S. (2025). Pengaruh pemanfaatan artificial intelligence terhadap motivasi belajar mahasiswa Fakultas Teologi di Universitas Kristen Teknologi Solo. STRATEGY: Jurnal Inovasi Strategi Dan Model Pembelajaran, 5(2), 212–218. https://doi.org/https://doi.org/10.51878/strategi.v5i2.5839

Bloomfield, J., & Fisher, M. J. (2019). Quantitative research design. Journal of the Australasian Rehabilitation Nurses Association, 22(2), 27–30.

Boers, J., Etty, T., Baars, M., & van Boekhoven, K. (2025). Exploring cognitive strategies in human-AI interaction: ChatGPT’s role in creative tasks. Journal of Creativity, 35(1), 1–8. https://doi.org/10.1016/j.yjoc.2025.100095

Fatmayanti, A. H. (2025). Kaum muda dan kecerdasan buatan: Narasi mahasiswa tentang teknologi sebagai bagian dari identitas akademik. Salus Cultura: Jurnal Pembangunan Manusia Dan Kebudayaan, 5(1), 81–92. https://doi.org/10.55480/saluscultura.v5i1.413

George, D., & Mallery, P. (2003). SPSS for Windows step by step: A simple guide and reference 11.0 update (4th ed.). Allyn & Bacon.

Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data Analysis (7th ed.). Pearson.

Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2019). Multivariate data analysis (8th ed.). Pearson Prentice. www.cengage.com/highered

Hanson, U., Angela Okonkwo, C., & Uchechukwu Orakwe, C. (2024). Implementing AI-enhanced learning analytics to improve educational outcomes using psychological insights. Iconic Research and Engineering Journals, 8(6), 543–553. https://www.researchgate.net/publication/389097973

Hendryadi. (2017). Validitas Isi: Tahap awal pengembangan kuesioner. Jurnal Riset Manajemen Dan Bisnis (JRMB) Fakultas Ekonomi UNIAT, 2(2), 169–178. https://doi.org/10.36226/jrmb.v2i2.47

Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1–55. https://doi.org/10.1080/10705519909540118

Ikhlas, M., Yasmin, L., Muharramah, D., & Kuswanto. (2025). Mempersiapkan pendidik masa depan di era kecerdasan buatan: Pengalaman calon guru sekolah dasar dengan aplikasi generatif AI. Jurnal Pengabdian Masyarakat Dan Riset Pendidikan, 3(4), 5190–5199. https://doi.org/10.31004/jerkin.v3i4.1373

International Test Commission. (2017). The ITC Guidelines for Translating and Adapting Tests (Second edition)

Iskandar, A., Johanis M, A. R., Mansyur, Rita, F., Ida, N., & Sitompul, P. H. S. (2023). Dasar metode penlitian. Cendekiawan Inovasi Digital Indonesia.

Jeon, J. (2024). Exploring AI chatbot affordances in the EFL classroom: Young learners’ experiences and perspectives. Computer Assisted Language Learning, 37(1–2), 1–26. https://doi.org/10.1080/09588221.2021.2021241

Jha, M., Jha, S., Holmesa, A. M., Smith, B., Murphy, B., Kansal, M., & Pidgeon, D. (2025). Integrating generative artificial intelligence across the curriculum in higher education: Multi-disciplinary case studies. Journal of Education, Innovation and Communication, 7(2). https://doi.org/10.34097/jeicom-7-2-1

Kharis, S. A. A., & Zili, A. H. A. (2024). ChatGPT sebagai alat pendukung pembelajaran: Tantangan dan peluang pembelajaran abad 21. Paedagoria: Jurnal Kajian, Penelitian Dan Pengembangan Kependidikan, 15(2), 206–214. https://doi.org/10.31764

Lai, J. W. (2024). Adapting self-regulated learning in an age of generative artificial intelligence chatbots. Future Internet, 16(6), 1–12. https://doi.org/10.3390/fi16060218

Li, Y., Zhou, X., & Chiu, T. K. F. (2025). Systematics review on artificial intelligence chatbots and ChatGPT for language learning and research from self-determination theory (SDT): What are the roles of teachers? In Interactive Learning Environments (Vol. 33, Issue 3, pp. 1850–1864). Routledge. https://doi.org/10.1080/10494820.2024.2400090

Lusiani, L. (2025). Analisis pilihan penggunaan artificial intelegence dalam mendukung perkuliahan fisika dan matematika terapan pada Taruna Teknika Nautika KPN. Relativitas: Jurnal Riset Inovasi Pembelajaran Fisika, 8(1), 44–57. https://doi.org/10.29103/relativitas.v8i1.19164

Luthfiyyah, K., Zhafira, L., Nurani, S., & Giwangsa, S. F. (2024). Analisis peran artificial intelligence (AI): ChatGPT dalam perkuliahan di kalangan mahasiswa PGSD Universitas Pendidikan indonesia. Jurnal Pendidikan Tambusai, 8(1), 5282–5290. https://doi.org/https://doi.org/10.31004/jptam.v8i1.13221

Ma, Y., Su, Y., Li, M., Zhang, Y., Chai, W., Huang, A., & Zhao, X. (2025). Preparing students for an AI-driven world: Generative AI and curriculum reform in higher education. Frontiers of Digital Education, 2(4), 1–22. https://doi.org/10.1007/s44366-025-0067-6

Maarif, S. (2025). Mengenal AI lebih dekat: Solusi untuk profesional, freelancer, pengusaha, pelajar/mahasiswa, dan industri kreatif. CV Detak Pustaka.

McDonald, N., Johri, A., Ali, A., & Collier, A. H. (2025). Generative artificial intelligence in higher education: Evidence from an analysis of institutional policies and guidelines. Computers in Human Behavior: Artificial Humans, 3, 1–11. https://doi.org/10.1016/j.chbah.2025.100121

Merentek, T. C., Usoh, E. J., & Lengkong, J. S. J. (2023). Implementasi kecerdasan buatan ChatGPT dalam pembelajaran. Jurnal Pendidikan Tambusai, 7(3), 26862–26869. https://doi.org/https://doi.org/10.31004/jptam.v7i3.10960

Nashir, M. H., Wirakusumah, T. K., & Erlandia, D. R. (2024). Hubungan penggunaan ChatGPT dengan pemenuhan kebutuhan mahasiswa. Filosofi: Publikasi Ilmu Komunikasi, Desain, Seni Budaya, 1(1), 129–139. https://doi.org/10.62383/filosofi.v1i1.57

Nemt-allah, M., Khalifa, W., Badawy, M., Elbably, Y., & Ibrahim, A. (2024). Validating the ChatGPT usage scale: Psychometric properties and factor structures among postgraduate students. BMC Psychology, 12(1), 1–7. https://doi.org/10.1186/s40359-024-01983-4

Niyu, Dwihadiah, D., Gerungan, A., & Purba, H. (2024). Penggunaan ChatGPT di kalangan mahasiswa dan dosen perguruan tinggi Indonesia. Journal of Strategic Communication, 14(1), 131–145. https://doi.org/https://doi.org/10.35814/coverage.v14i2.6058

Nugroho, B., Iriani, T., Murtinugraha, R. E., & Penggunaan, A. (2025). Analisis penggunaan aplikasi artificial intelligence (AI) sebagai alat bantu penyelesaian skripsi pada mahasiswa kata kunci. JIIP: Jurnal Ilmiah Ilmu Pendidikan, 8(3), 3022–3029. https://doi.org/https://doi.org/10.54371/jiip.v8i3.7391

Ododo, E. P., Iniobong, U. B., Udoessien, A. I., Ukpe, I. U., & James, O. D. (2024). Artificial intelligence in the classroom: Perceived challenges to vocational education student retention and critical thinking in tertiary institutions. The American Journal of Interdisciplinary Innovations and Research, 6(9), 30–39. https://doi.org/10.37547/tajiir/Volume06Issue09-05

Palayukan, H., Dewantara, H., Nurjannah, E., Pebrian, O., & Al Ayyubi, T. (2024). Investigasi persepsi mahasiswa terhadap ChatGPT dalam model blended learning pada pembelajaran matematika. Journal of Vocational, Informatics and Computer Education, 2(1), 14–26. https://doi.org/10.61220/voice

Pangestu, A. H., Setiyawan, A., Romadhon, M. S., Sutiawan, H., Pratama, A. R., Asviara, D. M., Zulkarnaen, I., & Artikel, H. (2024). Pengaruh penggunaan ChatGPT dan Google Scholar dalam mencari sumber informasi akademik bagi mahasiswa informasi artikel. ETNIK: Jurnal Ekonomi – Teknik, 3(2).

Qian, Y. (2025). Pedagogical applications of generative AI in higher education: A Systematic review of the field. TechTrends, 69, 1105–1120. https://doi.org/10.1007/s11528-025-01100-1

Rahmawati, A., Amirah, S. N., & Wijaya, N. (2025). Integrasi kecerdasan buatan dalam pendidikan tinggi Indonesia: Peluang, tantangan, dan kerangka implementasi. Jurnal Teknologi Sistem Informasi, 6(1), 114–126. https://doi.org/10.35957/jtsi.v6i1.11329

Ray, P. P. (2023). ChatGPT: a comprehensive review on background, applications, key challenges, bias, ethics, limitations and future scope. Internet of Things and Cyber-Physical Systems, 3, 121–154. https://doi.org/10.1016/j.iotcps.2023.04.003

Romlah, L. S., Hasanah, I. F., Hasanah, U., & Arif, M. Y. al. (2024). Redefining family education in the age of industry 5.0: Preparing future-ready generations. RADEN INTAN: Proceedings on Family and Humanity, 1(1), 194–202. https://radenintan.pascasarjanauinril.com/index.php/radenintan/article/view/19/18

Schnotz, W., & Kürschner, C. (2007). A reconsideration of cognitive load theory. Educational Psychology Review, 19(4), 469–508. https://doi.org/10.1007/s10648-007-9053-4

Shen, X., Chen, Z., Backes, M., & Zhang, Y. (2023). In ChatGPT we trust? Measuring and characterizing the reliability of ChatGPT. ArXiv Preprint, 1–21. https://doi.org/https://doi.org/10.48550/arXiv.2304.08979

Stone, B. M. (2021). The ethical use of fit indices in structural equation modeling: Recommendations for psychologists. Frontiers in Psychology, 12, 1–4. https://doi.org/10.3389/fpsyg.2021.783226

Supriyadi, E. (2024). Exploring google bard’s (Gemini) role in enhancing research articles in computational thinking and mathematics education. Papanda Journal of Mathematics and Sciences Research, 3(1), 28–37. https://doi.org/https://doi.org/10.56916/pjmsr.v3i1.707

Toma, R. B., & Yánez-Pérez, I. (2025). Factors influencing undergraduates’ ethical use of ChatGPT: A reasoned goal pursuit approach. Interactive Learning Environments, 33(6), 4000–4019. https://doi.org/10.1080/10494820.2025.2457349

Wardhani, N. S., Sulastiana, M., & Ashriyana, R. (2022). Adaptasi alat ukur learning agility pada karyawan untuk meningkatkan organizational agility: Versi Bahasa Indonesia. PSIKOLOGIKA, 27(2), 243–264. https://doi.org/10.20885/psikologika.vol27.iss2.art4

Wulandari, A. A., Ohorella, N. R., & Nurhaipah, T. (2024). Perceived ease of use and user experience using ChatGPT. JIKA: Jurnal Ilmu Komunikasi Andalan, 7(1), 52–75. https://doi.org/https://doi.org/10.31949/jika.v7i1.8206

Yenduri, G., Ramalingam, M., Selvi, G. C., Supriya, Y., Srivastava, G., Maddikunta, P. K. R., Raj, G. D., Jhaveri, R. H., Prabadevi, B., Wang, W., Vasilakos, A. V., & Gadekallu, T. R. (2024). GPT (Generative Pre-Trained Transformer) - A comprehensive review on enabling technologies, potential applications, emerging challenges, and future directions. IEEE Access, 12, 54608–54649. https://doi.org/10.1109/ACCESS.2024.3389497

Downloads

Published

2025-12-08

How to Cite

Hafsari, N. L., & Mahanani, F. K. (2025). Adaptation and Validation of the ChatGPT Usage Scale in Indonesia: Exploring Challenges of High Usage Among Students. Jurnal Kependidikan : Jurnal Hasil Penelitian Dan Kajian Kepustakaan Di Bidang Pendidikan, Pengajaran, Dan Pembelajaran, 11(4), 1399–1409. https://doi.org/10.33394/jk.v11i4.18058

Issue

Section

Articles

Citation Check