A ZE25A-O3 Sensor-Based Solution for Continuous Ozone Level Measurement in LINAC Environments

Authors

  • Nur Khasanah Universitas Islam Negeri Mataram
  • Lalu Sahrul Hudha Universitas Mataram
  • Jamiluddin Jamiluddin Universitas Islam Negeri Mataram
  • Nevi Ernita Universitas Islam Negeri Mataram
  • Bunawas Bunawas PT. Nuklir Teknologi Indonesia, Tangerang Selatan, Banten, Indonesia
  • I Wayan Ari M Radiotherapy Installation, RSUD Provinsi NTB
  • Rinarto Subroto Radiotherapy Installation, RSUD Provinsi NTB

DOI:

https://doi.org/10.33394/j-ps.v13i4.16540

Keywords:

Ozone, LINAC, , IoT, electrochemical, radiation

Abstract

Abstract

Ozone (O₃) generated during LINAC operation can accumulate indoors and pose respiratory risks, yet many facilities lack continuous monitoring. We designed and validated a low-cost, electrochemical sensor platform—ZE25A-O₃ integrated with an Arduino Mega, on-board logging, and a Nextion HMI—for real-time surveillance in a LINAC suite. The sensor was calibrated at 24 °C and 40% RH against 0.5–1.5 ppm standards, yielding slope = 1.045, intercept = −0.04067 ppm, R² = 0.99984, and RMSE = 9.39 ppb, supporting reliable low-ppb quantification. Time series were aggregated into 30-min bins with centered 1-h rolling means to extract diurnal structure while suppressing short-term fluctuations. Field measurements showed a 20–30 ppb background with intermittent spikes exceeding 100 ppb (peaks ~150 ppb). A reproducible daily pattern emerged: late-morning minima (~20–21 ppb) followed by evening enhancement (~26–28 ppb), consistent with ventilation and operational schedule. Average conditions were below the Indonesian workplace limit of 100 ppb, but episodic exceedances motivate real-time alerts and ventilation management. This work demonstrates a practical approach for continuous exposure assessment and data-informed environmental control in radiotherapy facilities.

References

Adler, D., & Severnini, E. (2023). Timing matters: Intra-day shifts of economic activity and ambient ozone concentrations. Journal of Public Economics, 223. https://doi.org/10.1016/j.jpubeco.2023.104905

Afshar-Mohajer, N., Zuidema, C., Sousan, S., Hallett, L., Tatum, M., Rule, A. M., Thomas, G., Peters, T. M., & Koehler, K. (2018). Evaluation of low-cost electro-chemical sensors for environmental monitoring of ozone, nitrogen dioxide, and carbon monoxide. Journal of Occupational and Environmental Hygiene, 15(2), 87–98. https://doi.org/10.1080/15459624.2017.1388918

Badura, M., Batog, P., Drzeniecka-Osiadacz, A., & Modzel, P. (2022). Low- and Medium-Cost Sensors for Tropospheric Ozone Monitoring—Results of an Evaluation Study in Wrocław, Poland. Atmosphere, 13(4), 542. https://doi.org/10.3390/atmos13040542

Barreto, D. N., Silva, W. R., Mizaikoff, B., & da Silveira Petruci, J. F. (2022). Monitoring Ozone Using Portable Substrate-Integrated Hollow Waveguide-Based Absorbance Sensors in the Ultraviolet Range. ACS Measurement Science Au, 2(1), 39–45. https://doi.org/10.1021/acsmeasuresciau.1c00028

Barshan, S., Pazirandeh, A., & Jahanfarnia, G. (2020). Measurement of ozone produced by 10 MeV electron accelerator Yazd in various currents. Journal of Instrumentation, 15(1). https://doi.org/10.1088/1748-0221/15/01/P01004

Borrego, C., Costa, A. M., Ginja, J., Amorim, M., Coutinho, M., Karatzas, K., Sioumis, T., Katsifarakis, N., Konstantinidis, K., De Vito, S., Esposito, E., Smith, P., André, N., Gérard, P., Francis, L. A., Castell, N., Schneider, P., Viana, M., Minguillón, M. C., … Penza, M. (2016). Assessment of air quality microsensors versus reference methods: The EuNetAir joint exercise. Atmospheric Environment, 147, 246–263. https://doi.org/10.1016/j.atmosenv.2016.09.050

Cleland, M. R., & Galloway, R. A. (2015). Ozone Generation in Air during Electron Beam Processing. Physics Procedia, 66, 586–594. https://doi.org/https://doi.org/10.1016/j.phpro.2015.05.078

Cross, E. S., Williams, L. R., Lewis, D. K., Magoon, G. R., Onasch, T. B., Kaminsky, M. L., Worsnop, D. R., & Jayne, J. T. (2017). Use of electrochemical sensors for measurement of air pollution: Correcting interference response and validating measurements. Atmospheric Measurement Techniques, 10(9), 3575–3588. https://doi.org/10.5194/amt-10-3575-2017

Demin, V. S., Krasovskii, A. N., Lyudchik, A. M., Pokatashkin, V. I., Grigorishin, I. L., & Kudanovich, O. N. (2008). Measurement of ozone over a wide range of concentrations using semiconductor NiO gas sensors. Measurement Techniques, 51(9), 1038–1044. https://doi.org/10.1007/s11018-008-9149-3

Dev, D., & Maria, E. Malafi. (2024). The Lives Saved: A Literature Review on the Role of Radiotherapy Improving Prognosis in Cancer Patients. Journal of Quality in Health Care & Economics, 7(1), 1–3. https://doi.org/10.23880/jqhe-16000360

Dubey, P., Sawatkar, A. R., Sathe, A. P., Sarma, K. S. S., & Soundararajan, S. (2009). GENERATION OF OZONE AND SAFETY ASPECTS IN AN ACCELERATOR FACILITY OF BARC. Proceedings of the DAE-BRNS Indian Particle Accelerator Conference.

Gao, Q., Zang, E., Bi, J., Dubrow, R., Lowe, S. R., Chen, H., Zeng, Y., Shi, L., & Chen, K. (2022). Long-term ozone exposure and cognitive impairment among Chinese older adults: A cohort study. Environment International, 160. https://doi.org/10.1016/j.envint.2021.107072

Gómez-Suárez, J., Arroyo, P., Cerrato-Álvarez, M., Hontañón, E., Masa, S., Menini, P., Presmanes, L., Alfonso, R., Pinilla-Gil, E., & Lozano, J. (2022). Development and Field Validation of Low-Cost Metal Oxide Nanosensors for Tropospheric Ozone Monitoring in Rural Areas. Chemosensors, 10(11), 478. https://doi.org/10.3390/chemosensors10110478

Guan, Y., Xiao, Y., Chu, C., Zhang, N., & Yu, L. (2022). Trends and characteristics of ozone and nitrogen dioxide related health impacts in Chinese cities. Ecotoxicology and Environmental Safety, 241. https://doi.org/10.1016/j.ecoenv.2022.113808

Hara, N., Oobuchi, J., Isobe, A., Sugimoto, S., Takatsu, J., & Sasai, K. (2022). Generation of ozone during irradiation using medical linear accelerators: an experimental study. Radiation Oncology, 17(1). https://doi.org/10.1186/s13014-022-02005-6

Khasanah, N., Raehanah, Bunawas, M, I. W. A., Subroto, R., H, L. S., A, P. P., & Ulfariah, D. (2024). Measurement and Risk Analysis of Ozone (O3) Concentrations in the 9 MeV and 12 MeV Electron Mode LINAC. Jurnal Penelitian Pendidikan IPA, 10(2), 757–763. https://doi.org/10.29303/jppipa.v10i2.5347

Kutsaev, S. V, Boucher, S., Mustapha, B., & Sheng, K. (2021). Novel technologies for Linac-based radiotherapy. In N. J. Cherepy, M. Fiederle, & R. B. James (Eds.), Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XXIII (Vol. 11838, p. 118380U). SPIE. https://doi.org/10.1117/12.2595707

Lee, J., Lee, H.-Y., Im, I.-C., & Yu, Y.-S. (2016). Variation of Indoor Average Ozone Concentration within the Radiation Therapy Room by High Energy Radiation. Journal of the Korean Society of Radiology, 10(3), 171–180. https://doi.org/10.7742/jksr.2016.10.3.171

Ma, R., Ban, J., Wang, Q., & Li, T. (2020). Statistical spatial-temporal modeling of ambient ozone exposure for environmental epidemiology studies: A review. In Science of the Total Environment (Vol. 701). Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2019.134463

McCallum‐Hee, B. I., Ibrahim, M., Mukwada, G., Rowshanfarzad, P., Dass, J., Dewitt, J., Parin, R., Withey, G., & Alkhatib, Z. (2025). Commissioning and clinical implementation of low dose dual‐field rotational TSET. Journal of Applied Clinical Medical Physics, 26(7). https://doi.org/10.1002/acm2.70180

Mishra, A. S., Verma, V. P., Choudhary, R. S., Goswami, S. G., Petwal, V. C., & Dwivedi, J. (2018). Ozone concentration study using 10 MeV electron beam accelerator. https://inis.iaea.org/search/search.aspx?orig_q=RN:49082934

Mueller, M., Meyer, J., & Hueglin, C. (2017). Design of an ozone and nitrogen dioxide sensor unit and its long-Term operation within a sensor network in the city of Zurich. Atmospheric Measurement Techniques, 10(10), 3783–3799. https://doi.org/10.5194/amt-10-3783-2017

Niu, Y., Cai, J., Xia, Y., Yu, H., Chen, R., Lin, Z., Liu, C., Chen, C., Wang, W., Peng, L., Xia, X., Fu, Q., & Kan, H. (2018). Estimation of personal ozone exposure using ambient concentrations and influencing factors. Environment International, 117, 237–242. https://doi.org/10.1016/j.envint.2018.05.017

Nuvolone, D., Petri, D., & Voller, F. (2018). The effects of ozone on human health. Environmental Science and Pollution Research, 25(9), 8074–8088. https://doi.org/10.1007/s11356-017-9239-3

Pang, X., Shaw, M. D., Lewis, A. C., Carpenter, L. J., & Batchellier, T. (2017). Electrochemical ozone sensors: A miniaturised alternative for ozone measurements in laboratory experiments and air-quality monitoring. Sensors and Actuators B: Chemical, 240, 829–837. https://doi.org/10.1016/j.snb.2016.09.020

Permenkes. (2016). PERATURAN MENTERI KESEHATAN REPUBLIK INDONESIA.

Salonen, H., Salthammer, T., & Morawska, L. (2018). Human exposure to ozone in school and office indoor environments. In Environment International (Vol. 119, pp. 503–514). Elsevier Ltd. https://doi.org/10.1016/j.envint.2018.07.012

Santamaria, V., Villarreta, K., & Solano, M. (2022). Dosimetric tests using the Step & Shoot technique for future implementation of IMRT with LINAC device at the ION. 2022 IEEE Central America and Panama Student Conference (CONESCAPAN), 1–5. https://doi.org/10.1109/CONESCAPAN56456.2022.9959394

Signorini, M. ., Kotsev, A. ., Gerboles, M. ., & Spinelle, L. . (2017). Evaluation of low-cost sensors for air pollution monitoring effect of gaseous interfering compounds and meteorological conditions. Publications Office.

Spinelle, L., Gerboles, M., Villani, M. G., Aleixandre, M., & Bonavitacola, F. (2015). Field calibration of a cluster of low-cost available sensors for air quality monitoring. Part A: Ozone and nitrogen dioxide. Sensors and Actuators, B: Chemical, 215, 249–257. https://doi.org/10.1016/j.snb.2015.03.031

Sun, L., Wong, K. C., Wei, P., Ye, S., Huang, H., Yang, F., Westerdahl, D., Louie, P. K. K., Luk, C. W. Y., & Ning, Z. (2016). Development and application of a next generation air sensor network for the Hong Kong marathon 2015 air quality monitoring. Sensors (Switzerland), 16(2). https://doi.org/10.3390/s16020211

Vaidya, J. S. (2021). Principles of cancer treatment by radiotherapy. 39(4). https://doi.org/https://doi.org/10.1016/j.mpsur.2021.02.002

Vidmar, R. J., & Stalder, K. R. (2008). Electron-beam generated air plasma: Ozone and electron density measurements. 2008 IEEE 35th International Conference on Plasma Science, 1–1. https://doi.org/10.1109/PLASMA.2008.4590950

Weschler, C. J. (2000). Ozone in Indoor Environments: Concentration and Chemistry. Indoor Air, 10, 269–288. http://journals.111unksgaard.dk/indoornir

Wu, C.-H., Lin, W.-Y., Kumar, U., Deng, Z.-Y., Lo, K. Y., & Chen, K.-L. (2024). Enhancing Ozone Gas Sensor Performance with Polypyrrole-Coated Metal-Oxide Semiconductors. 2024 IEEE SENSORS, 1–4. https://doi.org/10.1109/SENSORS60989.2024.10785217

Yang, B., & Hongmei Lu. (2012). The key issues of dual-supply logic level conversion. 2012 24th Chinese Control and Decision Conference (CCDC), 3217–3221. https://doi.org/10.1109/CCDC.2012.6244509

Zhengzhou Winsen Electronics TechnologyCo., L. (2021). Electrochemical Ozone Detection Module User’s Manual. www.winsen-sensor.com

Published

2025-09-28

How to Cite

Khasanah, N., Hudha, L. S., Jamiluddin, J., Ernita, N., Bunawas, B., M, I. W. A., & Subroto, R. (2025). A ZE25A-O3 Sensor-Based Solution for Continuous Ozone Level Measurement in LINAC Environments. Prisma Sains : Jurnal Pengkajian Ilmu Dan Pembelajaran Matematika Dan IPA IKIP Mataram, 13(4). https://doi.org/10.33394/j-ps.v13i4.16540

Issue

Section

Research Articles