The Effectiveness of Guided Inquiry Model on Higher Order Thinking Skills: A Systematic Review of Science Education in Indonesia

Authors

  • Calvin Mahaga Tarigan Universitas Negeri Medan
  • Esmeralda Gultom Universitas Negeri Medan
  • Fitria Fadila Harisi Universitas Negeri Medan
  • Mariati Purnama Simanjuntak Universitas Negeri Medan

DOI:

https://doi.org/10.33394/j-lkf.v13i2.17967

Keywords:

Guided inquiry, Higher order thinking skills, Science process skills, Systematic review, Science education

Abstract

The Guided Inquiry (GI) model has been extensively applied in science education to foster Higher Order Thinking Skills (HOTS), yet systematic evidence of its effectiveness across educational levels in Indonesia remains limited. This study conducted a narrative systematic literature review (SLR) of 20 studies (11 experimental/quasi-experimental, 4 meta-analyses, and 5 systematic reviews) published between 2019 and 2025, aiming to evaluate the effectiveness of GI in improving HOTS—critical thinking, creative thinking, and problem solving—as well as Science Process Skills (SPS) in Indonesian elementary, junior high, and senior high school science contexts. The review followed PRISMA guidelines and involved database searches in Portal Garuda, SINTA, Google Scholar, Scopus, ERIC, and Web of Science, using relevant keywords. Inclusion criteria required studies to focus on GI in science learning, report HOTS or SPS outcomes, and be published in reputable Indonesian or international journals. Study quality was assessed using adapted JBI Critical Appraisal Tools. Meta-analytic findings revealed very large effect sizes for critical thinking (g = 1.33), creative thinking (g = 1.10), and problem solving (g = 1.31), while experimental studies showed high-category SPS gains (N-Gain = 0.7) and improved scientific literacy. GI effectiveness was consistently high at the junior and senior high school levels (effect size 0.8–1.3), but varied at the elementary level (0.4–1.10), depending on scaffolding intensity and implementation duration. Integration with technology and STEM contexts led to superior outcomes. The review concludes that GI is highly effective in enhancing HOTS and SPS across levels, though effectiveness depends on adaptive scaffolding and learning conditions. Limitations include study heterogeneity and potential publication bias.

References

Adauyah, R., & Aznam, N. (2024). Guided inquiry learning model in chemistry education: A systematic review. Jurnal Penelitian Pendidikan IPA (JPPIPA), 10(3). https://doi.org/10.29303/jppipa.v10i3.6373

Ariskafitriani, I., & Tirtoni, F. (2025). Pengaruh efektivitas model pembelajaran inkuiri terbimbing melalui pendekatan kontekstual terhadap kemampuan berpikir kritis siswa. JPDI (Jurnal Pendidikan Dasar Indonesia), 10(2), 139–150. https://doi.org/10.26737/jpdi.v10i2.6942

Bybee, R. W. (1997). Achieving scientific literacy: From purposes to practices. The Science Teacher, 64(3), 28–33.

Cahaya, I. M. E., Suryaningsih, N. M. A., Parwata, I. M. Y., & Poerwati, C. E. (2024). The influence of a guided inquiry learning model in improving students' creative thinking abilities: A meta-analysis study. Indonesian Journal of Educational Development (IJED), 5(3), 376–384. https://doi.org/10.59672/ijed.v5i3.4211

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum Associates.

Dewanto, Santosa, T. A., Ratih, A., Asrizal, & Hardeli. (2024). The influence of the STEM-based guided inquiry model on students' creative thinking skills in science learning: A meta-analysis study. Jurnal Penelitian Pendidikan IPA (JPPIPA), 10(3), 88–95. https://doi.org/10.29303/jppipa.v10i3.6777

Doyan, A., Susilawati, & Hardiyansyah, A. (2021). Development of natural science learning tools with guided inquiry model assisted by real media to improve students' scientific creativity and science process skills. Jurnal Penelitian Pendidikan IPA (JPPIPA), 7(1), 15–20. https://doi.org/10.29303/jppipa.v7i1.485

Dykstra, D., Boyle, C., & Monarch, I. (1992). Studying conceptual change in learning physics. Science Education, 76(6), 615–652. https://doi.org/10.1002/sce.3730760605

Facione, P. A. (1990). Critical thinking: A statement of expert consensus for purposes of educational assessment and instruction. The California Academic Press.

Furtak, E. M., Seidel, T., Iverson, H., & Briggs, D. C. (2012). Experimental and quasi-experimental studies of inquiry-based science teaching: A meta-analysis. Review of Educational Research, 82(3), 300–329. https://doi.org/10.3102/0034654312457206

Hake, R. R. (1999). Analyzing change/gain scores. American Educational Research Association's Division D, Measurement and Research Methodology. https://web.physics.indiana.edu/sdi/AnalyzingChange-Gain.pdf

Hardy, I., Jonen, A., Möller, K., & Stern, E. (2006). Effects of instructional support within constructivist learning environments for elementary school students' understanding of "floating and sinking." Journal of Educational Psychology, 98(2), 307–326. https://doi.org/10.1037/0022-0663.98.2.307

Hastuti, D. A. W., & Wiyanto. (2019). Pengaruh model pembelajaran guided inquiry dengan metode eksperimen terhadap keterampilan proses sains siswa. Unnes Physics Education Journal (UPEJ), 8(3), 289–298. http://journal.unnes.ac.id/sju/index.php/upej/article/view/30461

Hendra, Z., & Kurniati, N. (2024). Development of interactive learning multimedia based on guided inquiry to improve student learning outcomes in science content (force, motion, and energy transfer). Fondatia: Jurnal Pendidikan Dasar, 8(1), 32–42. https://doi.org/10.36088/fondatia.v8i1.4477

Kim, H., & Im, S. (2021). Pre-service physics teachers' beliefs about learning physics and their learning achievement in physics. Asia-Pacific Science Education, 7(2), 500–521. https://doi.org/10.1163/23641177-bja10038

Kolb, D. A. (1984). Experiential learning: Experience as the source of learning and development. Prentice Hall.

Kuhn, D., & Dean, D. (2004). Metacognition: A bridge between cognitive psychology and educational practice. Theory into Practice, 43(4), 268–273. https://doi.org/10.1207/s15430421tip4304_4

Kusumaningsih, S. F., & Trimulyono, G. (2020). Pengembangan LKPD berbasis guided inquiry untuk melatihkan keterampilan literasi sains pada materi bakteri kelas X SMA. BioEdu: Berkala Ilmiah Pendidikan Biologi, 9(3), 378–380. https://ejournal.unesa.ac.id/index.php/bioedu

Lazonder, A. W., & Harmsen, R. (2016). Meta-analysis of inquiry-based learning: Effects of guidance. Review of Educational Research, 86(3), 681–718. https://doi.org/10.3102/0034654315627366

Maloney, D. P., O'Kuma, T., Hieggelke, C. J., & Van Heuvelen, A. (2001). Surveying students' conceptual knowledge of electricity and magnetism. American Journal of Physics, 69(S1), S12–S23. https://doi.org/10.1119/1.1371296

Maulidiyah, N., & Wulandari, F. (2023). The effect of the guided inquiry model on the reasoning abilities of elementary school students. Scaffolding: Jurnal Pendidikan Islam dan Multikulturalisme, 5(2), 653–668. https://doi.org/10.37680/scaffolding.v5i2.3247

Nur, J., Utami, S., Nuraini, H., & Kurniawan, A. (2024). Meta-analysis influence of integrated mind mapping inquiry based learning model on student problem solving skills. Jurnal Penelitian Pendidikan IPA (JPPIPA), 10(3), 1361–1371. https://doi.org/10.29303/jppipa.v10i3.6804

Nurkhasanah, A. F., Sabri, A., & Nelwati, S. (2024). Penerapan model inkuiri terbimbing sebagai solusi keaktifan peserta didik di SMP N 01 Tiumang Dharmasraya. Islamika: Jurnal Keislaman dan Ilmu Pendidikan, 6(3), 1474–1483.

OECD. (2019). PISA 2018 results (Volume I): What students know and can do. OECD Publishing. https://doi.org/10.1787/5f07c754-en

Osborne, J. (2010). Arguing to learn in science: The role of collaborative, critical discourse. Science, 328(5977), 463–466. https://doi.org/10.1126/science.1183944

Pahriah, Adnyana, P. B., Ariawan, I. P. W., & Wesnawa, I. G. A. (2024). Effectiveness of the constructivist approach (guided inquiry) in chemistry learning: A systematic review. Hydrogen: Jurnal Kependidikan Kimia, 12(5), 1152–1165. https://doi.org/10.33394/hjkk.v12i5.13353

Pedaste, M., Mäeots, M., Siiman, L. A., de Jong, T., van Riesen, S. A. N., Kamp, E. T., Manoli, C. C., Zacharia, Z. C., & Tsourlidaki, E. (2015). Phases of inquiry-based learning: Definitions and the inquiry cycle. Educational Research Review, 14, 47–61. https://doi.org/10.1016/j.edurev.2015.02.003

Petticrew, M., & Roberts, H. (2006). Systematic reviews in the social sciences: A practical guide. Blackwell Publishing.

Piaget, J. (1985). The equilibration of cognitive structures: The central problem of intellectual development. University of Chicago Press.

Pikoli, M. (2020). Using guided inquiry learning with multiple representations to reduce misconceptions of chemistry teacher candidates on acid–base concept. International Journal of Active Learning, 5(1), 1–10. http://journal.unnes.ac.id/nju/index.php/ijal

Polya, G. (1945). How to solve it: A new aspect of mathematical method. Princeton University Press.

Qoyyimah, T. F., & Nugroho, O. F. (2021). Pengaruh model pembelajaran guided inquiry berbasis pictorial riddle dalam meningkatkan berpikir kreatif siswa pada pembelajaran IPA di SDN Gudang. Jurnal PERSEDA, 4(3), 141–147. https://jurnal.ummi.ac.id/index.php/perseda

Sakina, B. S., Ekawati, R., & Dasna, I. W. (2024). The influence of guided inquiry worksheets on science literacy and learning outcomes in fourth-grade students. Scaffolding: Jurnal Pendidikan Islam dan Multikulturalisme, 6(3), 123–136. https://doi.org/10.37680/scaffolding.v6i3.6376

Samadun, Setiani, R., Dwikoranto, & Marsini. (2023). Effectiveness of inquiry learning models to improve students' critical thinking ability. International Journal of Recent Educational Research, 4(2), 203–212. https://journal.ia-education.com/index.php/ijorer

Sinta, A. D., & Agustina, P. (2024). Science process skills and biology learning outcomes of high school students through the application of the guided inquiry learning model. Edubiotik: Jurnal Pendidikan, Biologi dan Terapan, 9(01), 45–53. https://doi.org/10.33503/ebio.v9i01.4021

Suryono, W., Winiasri, L., Santosa, T. A., Sappaile, B. I., & Solehuddin, M. (2023). Effectiveness of the inquiry training model to improve students' critical thinking skills in learning: Systematic literature reviews and meta-analysis. Jurnal Penelitian Pendidikan IPA (JPPIPA), 9(10), 742–750. https://doi.org/10.29303/jppipa.v9i10.4804

Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12(2), 257–285. https://doi.org/10.1207/s15516709cog1202_4

Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Harvard University Press.

Yulianis, F., & Mawardi, M. (2021). Pengaruh penggunaan sistem pembelajaran flipped-guided inquiry learning (FGIL) terhadap hasil belajar siswa pada materi laju reaksi. Entalpi Pendidikan Kimia, 2(2), 1–8. https://doi.org/10.1021/bk-2019-1336.ch013

Zohar, A., & Dori, Y. J. (2003). Higher order thinking skills and low-achieving students: Are they mutually exclusive? The Journal of the Learning Sciences, 12(2), 145–181. https://doi.org/10.1207/S15327809JLS1202_1

Downloads

Published

2025-12-17

How to Cite

Tarigan, C. M., Gultom, E., Harisi, F. F., & Simanjuntak, M. P. (2025). The Effectiveness of Guided Inquiry Model on Higher Order Thinking Skills: A Systematic Review of Science Education in Indonesia. Lensa: Jurnal Kependidikan Fisika, 13(2), 398–418. https://doi.org/10.33394/j-lkf.v13i2.17967

Issue

Section

Articles