Uji Mutu Perkecambahan Benih Gandum (Triticum aestivum L.) Beberapa Genotipe
DOI:
https://doi.org/10.33394/bioscientist.v13i4.18546Keywords:
Benih gandum, genotipe, perkecambahan, vigor benih, biomassa kecambahAbstract
This study aims to evaluate and compare the germination quality of wheat seeds (Triticum aestivum L.) from several genotypes in order to identify the genotype with the best germination power and vigor. The research was carried out at the Seed Technology Laboratory, Faculty of Agriculture and Business, Satya Wacana Christian University using a Group Random Design (RAK) with three replicates. Data that did not meet the assumptions of normality and homogeneity were analyzed using the non-parametric Kruskal–Wallis test and followed by the Dunn–Bonferroni test at the level of 5%. The observation parameters were grouped into germination power parameters (germination power and growth sufficiency), vigor parameters (growth speed and wet and dry weight of sprouts), and early germination growth parameters (shoot and root length and number of leaves and roots). The results showed that the genotype had a real effect on the physiological quality of wheat seeds, where the Guri 2 genotype showed the best performance with high germination power and vigor and better root growth compared to other genotypes, while the Nias genotype also showed strong vigor and good germination quality, while the Guri 4 genotype had the lowest physiological quality of seeds with low germination power and vigor. These findings confirm the importance of the role of genetic variation in determining the physiological quality of wheat seeds, so that the Guri 2 and Nias genotypes have the potential to be used as superior genetic sources in wheat breeding programs as well as as the basis for the development and production of quality seeds to support the improvement of wheat adaptation and productivity in Indonesia.
References
Bayisa, M., Seid, H., Esatu, A., & Debeli, G. (2023). Evaluating Seed Quality and Germination Potential of Different Bread Wheat (<i>Triticum aestivum</i> L.) Varieties at Kulumsa Agricultural Research Centre, Ethiopia. Reports, 3(3), 29–34. https://doi.org/10.11648/j.reports.20230303.12
Collins, S. P., Storrow, A., Liu, D., Jenkins, C. A., Miller, K. F., Kampe, C., & Butler, J. (2021). Guidelines for the establishment and management of seed testing laboratories.
Duan, S., AL-Huqail, A. A., Alsudays, I. M., Younas, M., Aslam, A., Shahzad, A. N., Qayyum, M. F., Rizwan, M., Alhaj Hamoud, Y., Shaghaleh, H., & Yong, J. W. H. (2024). Effects of biochar types on seed germination, growth, chlorophyll contents, grain yield, sodium, and potassium uptake by wheat (Triticum aestivum L.) under salt stress. BMC Plant Biology, 24(1), 1–14. https://doi.org/10.1186/s12870-024-05188-0
Fu, C., Zhou, Y., Liu, A., Chen, R., Yin, L., Li, C., & Mao, H. (2024). Genome-wide association study for seedling heat tolerance under two temperature conditions in bread wheat (Triticum aestivum L.). BMC Plant Biology, 24(1), 1–17. https://doi.org/10.1186/s12870-024-05116-2
Haque, M. A. (2024). Effect of Seed Priming on Germination Behavior and Emergence of Wheat (Triticum aestivum L.). Journal of Agriculture and Ecology Research International, 25(2), 53–61. https://doi.org/10.9734/jaeri/2024/v25i2584
Javid, S., Bihamta, M. R., Omidi, M., Abbasi, A. R., Alipour, H., Ingvarsson, P. K., & Poczai, P. (2025). Genome-wide association study (GWAS) uncovers candidate genes linked to the germination performance of bread wheat (Triticum aestivum L.) under salt stress. BMC Genomics, 26(1). https://doi.org/10.1186/s12864-024-11188-z
Li, X., Chen, Y., Xu, Y., Sun, H., Gao, Y., Yan, P., Song, Q., Li, S., & Zhan, A. (2024). Genotypic variability in root morphology in a diverse wheat genotypes under drought and low phosphorus stress. Plants, 13(23), 3361. https://doi.org/10.3390/plants13233361
Laurençon, M., Legrix, J., Wagner, M. H., Demilly, D., Baron, C., Rolland, S., Ducournau, S., Laperche, A., & Nesi, N. (2024). Genomic and phenomic predictions help capture low-effect alleles promoting seed germination in oilseed rape in addition to QTL analyses. Theoretical and Applied Genetics, 137(7), 1-16. https://doi.org/10.1007/s00122-024-04659-0
Majeed, Y., Fiaz, S., Teng, W., Rasheed, A., Gillani, S. F. A., Xi, Z., Seleiman, M. F., Diatta, A. A., & Gitari, H. (2023). Evaluation of twenty genotypes of wheat (Triticum aestivum L.) grown under heat stress during germination stage. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 51(2), 1–20. https://doi.org/10.15835/nbha51213207
Maulana, F., Huang, W., Anderson, J. D., Kumssa, T. T., & Ma, X.-F. (2021). Genome-wide association mapping of seedling vigor and regrowth vigor in winter wheat. Crops, 1(3), 153–165. https://doi.org/10.3390/crops1030015
Mardi, C. T., Trikoesoemaningtyas, & Wahyu, Y. (2022). Keragaan dan keragaman genetik genotipe-genotipe F2:3 gandum (Triticum aestivum L.) di dataran tinggi Indonesia. Jurnal Agronomi Indonesia, 50(1), 33–40. https://doi.org/10.24831/jai.v50i1.37104
Nabizadeh, E. (2014). Response of wheat genotypes to artificial water stress at germination and seedling growth stages. Advances in Environmental Biology, 8(1), 115–119.
Nik, M. M., Babaeian, M., & Tavassoli, A. (2011). Effect of seed size and genotype on germination characteristic and seed nutrient content of wheat. Scientific Research and Essays, 6(9), 2019–2025. https://doi.org/10.5897/sre11.621
Putra, F. O. P., & Kurnia, T. D. (2019). Pemaraman Benih Gandum (Triticum aestivum L .) untuk Meningkatkan Kualitas Perkecambahan pada Kondisi Cekaman Kering. Jurnal Agric: Ilmu Pertanian, 31(1), 89–101.
Ramappa, S., Joshi, M. A., Krishna, H., Dunna, V., Jain, N., Sreevathsa, R., & Devate, N. B. (2023). Unravelling the genetic basis of moisture deficit stress tolerance in wheat for seedling vigour-related traits and root traits using genome-wide association study. Genes, 14(10), 1902. https://doi.org/10.3390/genes14101902
Shahbazi, F. (2021). A study on the seed susceptibility of wheat (Triticum aestivum L.) cultivars to impact damage. Journal of Agricultural Science and Technology, 14(3), 505–512.
Sharma. E., & Majee, M. (2023). Seed germination variability: why do genetically identical seeds not germinate at the same time? Journal of Experimental Botany, 74(12), 3462-3475. https://doi.org/10.1093/jxb/erad101
Temizgul, R., Ciftci, B., Kardes, Y. M., Kara, R., Temizgul, S., Yilmaz, S., & Kaplan, M. (2025). Comparison of different hulled wheat genotypes in terms of yield, morphological, and nutritional properties. Genetic Resources and Crop Evolution, 72(1), 475–482. https://doi.org/10.1007/s10722-024-01994-5
Waseem Abbas, M. (2018). Germination and Seedling Growth of Wheat as Affected by Seed Priming and its Duration. Agricultural Research & Technology: Open Access Journal, 18(3), 14–20. https://doi.org/10.19080/artoaj.2018.18.556062
Yue, J., Liu, Y., Yuan, S., Sun, H., Lou, H., Li, Y., Guo, H., Liu, Z., Zhang, F., Zhai, N., Zhang, S., Bai, J., & Zhang, L. (2024). Uncovering seed vigor responsive miRNA in hybrid wheat and its parents by deep sequencing. BMC Genomics, 25, Article 991. https://doi.org/10.1186/s12864-024-10878-y
Zanjan, M. G., & Asli, D. E. (2012). A study of seed germination and early seeding growth of wheat genotypes affected by different seed pyridoxine-priming duration. Annals of Biological Research, 3(12), 5687–5691.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Alexandre Meziwasokhi Hondro, Dina Rotua Valentina Banjarnahor, Theresa Dwi Kurnia, Yuniel Melvanolo Zendrato

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.









