Laju Pertumbuhan, Biomassa, dan Produksi Fikosianin Arthrospira platensis Perairan Pulau Jawa Pada Variasi Salinitas
DOI:
https://doi.org/10.33394/bioscientist.v13i4.18387Keywords:
Arthrospira platensis, salinitas, laju pertumbuhan, biomassa, fikosianinAbstract
This study aims to identify and determine the optimal salinity that can produce specific growth rates, maximum dry biomass production, and the highest phycocyanin content and productivity in local strains of A. platensis in the waters of Java Island. This study was conducted using three strains of Arthrospira platensis originating from Jepara, Bogor, and Yogyakarta with salinity variations of 10, 20, and 30 ppt and three replicates using walne fertilizer culture media. The cultures were cultivated for eight days to calculate the growth rate and measure the biomass and phycocyanin concentration. The results of this study showed that the biomass of A. platensis in all strains was maximum at 30 ppt. The specific growth rate of A. platensis strains JPR and BGR was fastest at 30 ppt, and phycocyanin production was highest at 20 ppt. Meanwhile, the MRP strain showed a fast growth rate at 10 ppt and the highest phycocyanin production at 30 ppt. Based on the results of this study, it can be concluded that each strain has a different strategy in responding to salinity in terms of growth rate, biomass, and phycocyanin production.
References
Arista, T. V., Aldya, R. F., & Prasetyo, N. A. (2022). Studi Keragaman Makroalga di Pantai Clungup Malang Selatan. Bioma : Jurnal Biologi Dan Pembelajaran Biologi, 7(1), 72–80. https://doi.org/10.32528/bioma.v7i1.6087
Aziez, M., Suharoschi, R., Merakeb, M. S., Pop, O. L., & Ciont, C. (2025). Phenolic Profiling and Bioactive Properties of Arthrospira platensis Extract in Alleviating Acute and Sub-Chronic Colitis. 1–23.
Bennet, A., & Bogoard, L. (1973). Complementary chromatic adaptation in a filamentous blue-green alga. J. Cell Biol, 58, 419–435.
Cahya, N., Waspodo, S., & Setyono, B. D. H. (2020). Analisis Pertumbuhan Spirulina sp. Dengan Kombinasi Pupuk Yang Berbeda. Jurnal Perikanan, 10(2), 123–133.
Chaiklahan, R., Chirasuwan, N., Srinorasing, T., & Attasat, S. (2022). Bioresource Technology Enhanced biomass and phycocyanin production of Arthrospira ( Spirulina ) platensis by a cultivation management strategy : Light intensity and cell concentration. 343.
Chen, L., & Zhang, W. (2021). Salt-Tolerant Synechococcus elongatus UTEX 2973 Obtained via Engineering of Heterologous Synthesis of Compatible Solute Glucosylglycerol. 12, 1–11. https://doi.org/10.3389/fmicb.2021.650217
De Morais, M. G., Da Fontoura Prates, D., Moreira, J. B., Duarte, J. H., & Costa, J. A. V. (2018). Phycocyanin from microalgae: Properties, extraction and purification, with some recent applications. Industrial Biotechnology, 14(1), 30–37. https://doi.org/10.1089/ind.2017.0009
Deshmukh, R. (2021). Phycocyanin Market Size, Share, Competitive Landscape and Trend Analysis Report by Form, Grade and Application : Global Opportunity Analysis and Industry Forecast, 2021-2030. Allied Market Research.
Doello, S., Burkhardt, M., Doello, S., Burkhardt, M., & Forchhammer, K. (2021). Article The essential role of sodium bioenergetics and ATP homeostasis in the developmental transitions of a cyanobacterium ll ll The essential role of sodium bioenergetics and ATP homeostasis in the developmental transitions of a cyanobacterium. Current Biology, 31(8), 1606-1615.e2. https://doi.org/10.1016/j.cub.2021.01.065
Fakhri, M., Antika, W., Wilujeng Ekawati, A., Nasrullah, D., & Arifin, B. (2020). Pertumbuhan, Kandungan Pigmen, dan Protein Spirulina platensis yang Dikultur Pada Ca(NO 3 ) 2 Dengan Dosis yang Berbeda. Journal of Aquaculture and Fish Health, 9(1), 38–47. https://e-journal.unair.ac.id/JAFH
Fernandes, R., Campos, J., Serra, M., Fidalgo, J., Almeida, H., Casas, A., Toubarro, D., & Barros, A. I. R. N. A. (2023). Exploring the Benefits of Phycocyanin: From Spirulina Cultivation to Its Widespread Applications. Pharmaceuticals, 16(4). https://doi.org/10.3390/ph16040592
Hamidi, M., Mohammadi, A., Mashhadi, H., & Mahmoudnia, F. (2023). Results in Engineering Evaluation of effective environmental parameters on lipid , protein and beta-carotene production in Spirulina platensis microalga. 18, 1–8.
Hanani, T., Widowati, I., & Susanto, A. (2020). Kandungan Senyawa Beta Karoten pada Spirulina platensis dengan Perlakuan Perbedaan Lama Waktu Pencahayaan. Buletin Oseanografi Marina, 9(1), 55–58. https://doi.org/10.14710/buloma.v9i1.24681
Hong, D. D., Hien, H. T. M., Thom, L. T., Ha, N. C., Huy, L. A., Thu, N. T. H., Cuong, N., Tang, D. Y. Y., & Show, P. L. (2023). Transcriptome Analysis of Spirulina platensis sp. at Different Salinity and Nutrient Compositions for Sustainable Cultivation in Vietnam. Sustainability (Switzerland), 15(15). https://doi.org/10.3390/su151511906
Husni, A., & Budhiyanti, A., A. (2021). Rumput Laut Sebagai Sumber Pangan, Kesehatan Dan Kosmetik. UGM Press.
Ilhamdy, A. F., Farel, Y., Tambunan, S., Teknologi, J., Perikanan, H., Maritim, U., & Ali, R. (2020). Pertumbuhan Mikroalga Spirulina (Arthrospira platensis) Dalam Tekanan Stirofoam Pada Lingkungan Air Tawar. 03(02), 114–120.
Klähn, S., Mikkat, S., Riediger, M., Georg, J., Hess, W. R., & Hagemann, M. (2021). Integrative analysis of the salt stress response in cyanobacteria. Biology Direct, 1–23. https://doi.org/10.1186/s13062-021-00316-4
Lao, I. K. M., & Edullantes, B. (2025). Growth , Productivity , and Size Structure of Spirulina Strain Under Different Salinity Levels : Implications for Cultivation Optimization. 1–16.
Markou, G., Kougia, E., Arapoglou, D., Chentir, I., Andreou, V., & Tzovenis, I. (2023). Production of Arthrospira platensis: Effects on Growth and Biochemical Composition of Long-Term Acclimatization at Different Salinities. Bioengineering, 10(2). https://doi.org/10.3390/bioengineering10020233
Maulana, G., D., Risjani, Y., & Taqiyyah, A., M. (2023). The Growth , Biomass and Phycocyanin of Spirulina platensis Cultured with Liquid Organic ( POC ) and NPK Fertilizers The Growth , Biomass and Phycocyanin of Spirulina platensis Cultured with Liquid Organic ( POC ) and NPK Fertilizers. Earth and Environmental Science. https://doi.org/10.1088/1755-1315/1191/1/012012
Pan, Y., Amenorfenyo, D. K., Dong, M., Zhang, N., Huang, X., Li, C., & Li, F. (2024). Effects of salinity on the growth , physiological and biochemical components of microalga Euchlorocystis marina. 5, 1–9. https://doi.org/10.3389/fmars.2024.1402071
Putri, A., Melandari, S. Q., Mariska, O., Gustiarni, M. P., & Edelwis, T. W. (2024). Identifikasi Keanekaragaman Makroalga Yang Tersebar di Perairan Pulau Jawa. BIO-EDU: Jurnal Pendidikan Biologi, 8(3), 216–224. https://doi.org/10.32938/jbe.v8i3.5528
Rizzoli, M., Lutzu, G. A., Usai, L., Fais, G., Dessì, D., Soto-Ramirez, R., Cosenza, B., & Concas, A. (2025). Photoautotrophic Batch Cultivation of Limnospira (Spirulina) platensis: Optimizing Biomass Productivity and Bioactive Compound Synthesis Through Salinity and pH Modulation. Marine Drugs, 23(7), 1–22. https://doi.org/10.3390/md23070281
Setiawan, A. (2023). Potential of microalgae in carbon fixation and bioactive compound production: A study from Java Island. Renewable and Sustainable Energy Reviews, 174.
Tavanandi, H. A., Mittal, R., Chandrasekhar, J., & Raghavarao, K. S. M. S. (2018). Simple and efficient method for extraction of C-Phycocyanin from dry biomass of Arthospira platensis. Algal Research, 31, 239–251. https://doi.org/10.1016/j.algal.2018.02.008
Tel-Or, S., Harel, A., Ben-Chaim, S., & Bar-Even, Y. (2018). Phycobiliproteins as Natural Antioxidants. In Cyanobacterial Biotechnology: Applications in Food, Feed and Biofuel Production (p. 12). CRC Press.
Thangsiri, S., Inthachat, W., Temviriyanukul, P., & Sahasakul, Y. (2024). Bioactive compounds and in vitro biological properties of Arthrospira platensis and Athrospira maxima : a comparative study. 1–16.
Utami, E., Mahardika, R. G., Studi, P., Universitas, B., Belitung, B., Studi, P., Kelautan, I., Bangka, U., Studi, P., Universitas, K., & Belitung, B. (2022). Pengaruh Salinitas terhadap Kepadatan Populasi dan Konsentrasi Klorofil-a Spirulina pada Media Kultur Modifikasi Walne dan Air Limbah Budidaya Ikan Effect of Salinity on The Population Density and Chlorophyll-a Spirulina Concentration in Modified Culture . 07(2), 112–120.
Villaró, S., García-Vaquero, M., Morán, L., Álvarez, C., Cabral, E. M., & Lafarga, T. (2023). Effect of seawater on the biomass composition of Spirulina produced at a pilot-scale. New Biotechnology, 78, 173–179. https://doi.org/10.1016/j.nbt.2023.11.002
Widawati, D., Santosa, G. W., & Yudiati, E. (2022). Pengaruh Pertumbuhan Spirulina platensis terhadap Kandungan Pigmen beda Salinitias. Journal of Marine Research, 11(1), 61–70. https://doi.org/10.14710/jmr.v11i1.30096
Yu, C., Zheng, J., Zhang, Y., Hu, Y., Luo, W., Zhang, J., Yu, J., Liu, J., Nixon, P. J., Zhou, W., & Shao, S. (2025). Towards sustainable spirulina farming: Enhancing productivity and biosafety with a salinity-biostimulants strategy. Bioresource Technology, 419(December 2024), 132043. https://doi.org/10.1016/j.biortech.2025.132043
Yuan, B., Li, Z., Shan, H., Dashnyam, B., Xu, X., McClements, D. J., Zhang, B., Tan, M., Wang, Z., & Cao, C. (2022a). A review of recent strategies to improve the physical stability of phycocyanin. Current Research in Food Science, 5, 2329–2337. https://doi.org/10.1016/j.crfs.2022.11.019
Yuan, B., Li, Z., Shan, H., Dashnyam, B., Xu, X., McClements, D. J., Zhang, B., Tan, M., Wang, Z., & Cao, C. (2022b). A review of recent strategies to improve the physical stability of phycocyanin. Current Research in Food Science, 5, 2329–2337. https://doi.org/10.1016/j.crfs.2022.11.019
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Mutia Dinda Lestari, Sajidan, Artini Pangastuti

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.









