Identifikasi Tahap Perkembangan Mikrospora melalui Ukuran Floret pada Jantung Pisang Tanduk

Authors

  • Devi Bunga Pagalla Universitas Negeri Gorontalo
  • Jusna Ahmad Universitas Negeri Gorontalo
  • Indriati Husain Universitas Negeri Gorontalo
  • Nazwa S. Lamante Universitas Negeri Gorontalo
  • Rika Eyato Universitas Negeri Gorontalo

DOI:

https://doi.org/10.33394/bioscientist.v13i4.17681

Keywords:

Jantung pisang, mikrosporogenesis, kultur mikrospora, floret, braktea

Abstract

This study aimed to identify the relationship between floret length and the developmental stages of microspores in banana male inflorescence (Musa spp. cv. Tanduk), and to determine the optimal floret size range as an explant source for initiating microspore culture. Ten bract layers were analyzed, with five florets randomly selected from each layer and measured for their length. Anthers were extracted from each floret, crushed in sterile water, and observed microscopically using a wet mount preparation. The results revealed a strong correlation between floret length and microspore developmental stages. Microspores at the late uninucleate (vacuolated) to early bicellular stages were consistently found in florets ranging from 4.68 to 4.34 cm in length. Based on these findings, florets within the 4.60 to 4.00 cm range are recommended as the optimal size for microspore culture initiation, as they contain a higher proportion of developmentally competent microspores for embryogenesis induction. In conclusion, this study provides essential morphological and cytological criteria to support efficient explant selection for in vitro regeneration of banana through the microspore culture approach.

References

Baillie, A. M. R., Epp, D. J., Hucheson, D., & Keller, W. A. (1992). In vitro culture of isolated microspores and regeneration of plants in Brassica campestris. Plant Cell Reports, 11(3), 234–237. https://doi.org/10.1007/BF00235072

Calabuig-Serna, A., Mir, R., Sancho-Oviedo, D., Arjona-Mudarra, P., & Seguí-Simarro, J.M. (2024). Calcium levels modulate embryo yield in Brassica napus microspore embryogenesis. Frontiers in Plant Science, 15. https://doi.org/10.3389/fpls.2024.1512500

Cristea, T. O., Iosob, G.-A., Brezeanu, C., & Brezeanu, M. (2021). Effect of Chemical Composition of Nutritive Medium and Explant Size Over Androgenetic Response in Microspore Culture of Brassica oleracea L. Rev. Chim, 71(10), 131–136. https://doi.org/10.37358/Rev.Chim.1949

Darvari, F.M., Sariah, M., Puad, M.P., & Maziah, M. (2010). Micropropagation of some Malaysian banana and plantain (Musa sp.) cultivars using male flowers. African Journal of Biotechnology, 9(16): 2360-2366. http://www.academicjournals.org/AJB

Gamborg, O.L., Murashige, T., Thorpe, T.A., & Vasil, I.K. (1976). Plant tissue culture media. In Vitro Cell.Dev.Biol.-Plant 12, 473–478. https://doi.org/10.1007/BF02796489

Hale, A. L., Farnham, M. W., Nzaramba, M.N., & Kimbeng, C. A. (2007). Heterosis for horticultural traits in broccoli. Theoretical and Applied Genetics, 115(3), 351–360. https://doi.org/10.1007/s00122-007-0569-2

Klíma, M., Jozová, E., Jelínková, I., Kučera, V., Hu, S., & Čurn, V. (2019). Early in vitro selection of winter oilseed rape (Brassica napus L.) plants with the fertility restorer gene for CMS Shaan 2A via non-destructive molecular analysis of microspore-derived embryos. Czech Journal of Genetics and Plant Breeding, 55(4), 162–165. https://doi.org/10.17221/94/2018-CJGPB

Kozar, E. V., Kozar, E. G., & Domblides, E. A. (2022). Effect of the Method of Microspore Isolation on the Efficiency of Isolated Microspore Culture In Vitro for Brassicaceae Family. Horticulturae, 8(10). https://doi.org/10.3390/horticulturae8100864

Nandariyah, Endang, Y., & Yunian, T. A. (2021). Development of banana in vitro from male bud culture supplemented with some concentration of sucrose and benzyladenine. IOP Conference Series: Earth and Environmental Science, 724(1). https://doi.org/10.1088/1755-1315/724/1/012007

Pagalla, D. B., Indrianto, A., Maryani, & Semiarti, E. (2020). Induction of Microspore Embryogenesis of Eggplant (Solanum melongena L.) ‘Gelatik.’ Journal of Tropical Biodiversity and Biotechnology, 5(2), 124–131. https://doi.org/10.22146/jtbb.53677

Pechan, P. M., & Smykal, P. (2008). Androgenesis: Affecting the fate of the male gametophyte. Physiologia Plantarum, 111(1), 1–8. https://doi.org/10.1034/j.1399- 3054.2001.1110101.x

Pérez-Pérez, Y., Bárány, I., Berenguer, E., Carneros, E., Risueño, M. C., & Testillano, P.S. (2019). Modulation of autophagy and protease activities by small bioactive compounds to reduce cell death and improve stress-induced microspore embryogenesis initiation in rapeseed and barley. Plant Signaling and Behavior, 14(2). https://doi.org/10.1080/15592324.2018.1559577

Vilhena, R. de O., Marson, B. M., Budel, J. M., Amano, E., Messias-Reason, I. J. de T., & Pontarolo, R. (2019). Morpho-anatomy of the inflorescence of Musa paradisiaca. Revista Brasileira deFarmacognosia, 29(2), 147–151. https://doi.org/10.1016/j.bjp.2019.01.003

Wang, M., Farnham, M. W., & Nannes, J. S. P. (2008). Ploidy of broccoli regenerated from microspore culture versus anther culture. Plant Breeding, 118(3), 249–252. https://doi.org/10.1046/j.1439-0523.1999.118003249.x

Wang, T. T., Li, H. X., Zhang, J., Ouyang, B., Lu, Y., & Ye, Z. (2009). Initiation and development of microspore embryogenesis in recalcitrant purple flowering stalk (Brassica campestris ssp. chinensis var. purpurea Hort) genotypes. Scientia Horticulturae, 121(4), 419–424. https://doi.org/10.1016/j.scienta.2009.03.012

Weigt, D., Niemann, J., Siatkowski, I., Zyprych-Walczak, J., Olejnik, P., & Kurasiak- Popowska, D. (2019). Effect of zearalenone and hormone regulators on microspore embryogenesis in anther culture of wheat. Plants, 8(11). https://doi.org/10.3390/plants8110487

Downloads

Published

2025-11-13

How to Cite

Pagalla, D. B., Ahmad, J., Husain, I., Lamante, N. S., & Eyato, R. (2025). Identifikasi Tahap Perkembangan Mikrospora melalui Ukuran Floret pada Jantung Pisang Tanduk. Bioscientist : Jurnal Ilmiah Biologi, 13(4), 2525–2535. https://doi.org/10.33394/bioscientist.v13i4.17681

Issue

Section

Articles