

Development of Interactive Learning Media Based on Differentiated Learning Styles to Improve Literacy and Numeracy in Early Childhood

Komang Tri Widianingsih*, I Nyoman Jampel, I Gede Astawan

Early Childhood Education, Postgraduate Program,
Universitas Pendidikan Ganesha, Indonesia.

*Corresponding Author. Email: triwidianingsih83@gmail.com

Abstract: This study aims to develop, validate, and evaluate the practicality and effectiveness of differentiated interactive learning media based on learning styles to improve early literacy and numeracy. The research applied an R&D method following the ADDIE model (Analysis, Design, Development, Implementation, Evaluation). The participants were 30 children aged 5–6 years, divided into experimental and control groups. Instruments included literacy and numeracy tests, expert validation sheets, and practicality questionnaires for teachers and children. Data were analyzed using normality and homogeneity tests and MANOVA with SPSS 26. The findings showed that the media was highly valid (Aiken's $V > 0.90$), very practical (teacher response 95.56% and children's response 91.48%), and effective in improving literacy ($F = 20.711$; $p < 0.001$; $R^2 = 0.425$) and numeracy ($F = 63.439$; $p < 0.001$; $R^2 = 0.694$). The more substantial effect on numeracy reflected the role of concrete and kinesthetic activities, while audio-visual features supported literacy gains. These results confirm that the differentiated interactive learning media is a pedagogically relevant tool to support literacy and numeracy achievement within the Merdeka Curriculum.

Article History

Received: 27-07-2025

Revised: 30-08-2025

Accepted: 16-09-2025

Published: 25-10-2025

Key Words:

Early Childhood;
Interactive Media;
Learning Styles; Literacy;
Numeracy.

How to Cite: Widianingsih, K. T., Jampel, I. N., & Astawan, I. G. (2025). Development of Interactive Learning Media Based on Differentiated Learning Styles to Improve Literacy and Numeracy in Early Childhood. *Jurnal Paedagogy*, 12(4), 1075-1089. <https://doi.org/10.33394/jp.v12i4.17382>

<https://doi.org/10.33394/jp.v12i4.17382>

This is an open-access article under the CC-BY-SA License.

Introduction

Early childhood is a critical period for developing foundational literacy and numeracy skills that shape later academic success and life opportunities. Yet, many education systems worldwide continue to report low proficiency in these basic skills (Parker et al., 2022). Results from the Programme for International Student Assessment (PISA) 2022 showed a decline in mathematics performance, with Indonesia's average score decreasing from 379 in 2018 to 366 in 2022. Moreover, only 18% of Indonesian students reached at least Level 2 proficiency in mathematics, a figure far below the OECD average of 69% (OECD, 2023). Over the past decade, roughly 70% of 15-year-olds have failed to reach minimum competency in literacy and numeracy (Kartika, 2024). These alarming outcomes underscore the urgent need for innovations in early education to strengthen literacy and numeracy from the ground up.

In response, the Indonesian government introduced the Merdeka Curriculum in 2022 as a major reform aimed at improving foundational learning outcomes (Kartika, 2024). This new curriculum emphasizes flexible, student-centered pedagogy and seeks to address entrenched disparities in educational quality across regions and socio-economic groups. Teachers are now encouraged, and in some cases mandated, to adopt differentiated and engaging instructional approaches, including the integration of digital technologies, to

optimize content delivery and better meet students' individual learning needs (Siswanti & Daud, 2024).

However, transforming these policy aspirations into classroom practice remains challenging. Many early childhood educators lack the training, confidence, or resources to effectively integrate technology in their teaching, resulting in continued reliance on conventional one-size-fits-all methods (Ogegbo & Aina, 2022). Even when educators recognize the value of technology for young children's learning, barriers such as limited ICT access, insufficient support, and lack of developmentally appropriate digital content often hinder implementation (Ogegbo & Aina, 2020). As a result, preschool and early primary classrooms frequently miss opportunities to leverage interactive media and differentiated strategies that could make learning more accessible and enjoyable for every child. This gap between the Merdeka Curriculum's innovative vision and the reality of current practice highlights the need for research-informed solutions and capacity-building in early childhood settings.

Another critical consideration is the diversity of learning preferences and modalities among young children. Research shows that children construct knowledge through multiple modes, visual, auditory, verbal, and kinesthetic, especially when learning early literacy and numeracy concepts (Muguwe et al., 2024). Indeed, Ningsi & Hartono (2025) and Dermitzaki (2025) observe that young learners require more than verbal explanations or textbook exercises to fully grasp new concepts and stay motivated. Similarly, Hidayat et al. (2023) note that simply relying on teachers is no longer sufficient in today's classrooms; teachers are expected to create learning environments that are enjoyable, creative, and dialogical to capture children's interest.

Observations revealed that teaching practices and learning media remain monotonous and fail to accommodate children's diverse learning preferences. Teachers reported that children often struggled to grasp basic literacy and numeracy concepts, while school leaders highlighted that students entering primary school also faced persistent challenges. These findings emphasize that the low performance in literacy and numeracy is not solely due to children's abilities, but also the lack of adaptive media tailored to their learning needs. Consequently, there is a pressing need for innovative instructional media to provide engaging, compelling, and differentiated learning experiences for early childhood education. (Oya et al., 2024).

Interactive learning media offer a promising avenue to address these challenges and align teaching practices with both children's needs and policy mandates. Broadly defined, interactive learning media include digital and physical educational tools (such as multimedia apps, e-books, educational games, and interactive storytelling materials) that actively involve learners through touch, movement, sound, and visual stimuli (Adawiyah et al., 2024). Prior studies have shown that such media can serve as a bridge between abstract academic concepts and young children's concrete understanding (Irmaningrum et al., 2023). Likewise, Hossain (2024) reports that well-designed educational media can clarify difficult content, enrich children's vocabulary, and "bring lessons to life" through multi-sensory engagement. In early childhood contexts, integrating interactive media into lessons has been associated with increased student attention, participation, and enjoyment of learning. Thus, a critical need exists for developing and testing innovative instructional media that are not only pedagogically effective but also feasible and user-friendly for teachers in real-world early childhood settings.

One innovative framework that can guide the design of such media is the VARK learning style model (Visual, Auditory, Read/Write, Kinesthetic). The VARK model provides a simple yet practical way to categorize learners' preferred modes of information intake, and it encourages educators to deliver content in multiple formats to reach all learners. While debates persist about the rigidity of "learning styles," there is consensus that a multimodal approach can enrich learning experiences, particularly for young children, who benefit from engaging as many senses as possible during instruction (Viet Quynh, 2024). The VARK model has been widely applied in various educational contexts because of its intuitiveness and ease of use in classroom planning. By ensuring that teaching materials incorporate visual elements, auditory elements (spoken words, music, sound effects), reading/writing elements (text, letters, labels), and kinesthetic elements (hands-on activities, interactive touch or movement), educators can cater to a broad spectrum of learning preferences in one cohesive learning experience (Lee, 2019).

Recent studies demonstrate the effectiveness of integrating VARK-based strategies with modern technology. For instance, Lee (2019) implemented a technology-mediated multimodal approach using digital audio-visual materials, and found that 100% of students agreed this approach helped them learn more effectively. In another study, Irmaningrum et al. (2023) developed a learning medium for elementary students based on the VARK model, embedding illustrated stories (visual), narration (auditory), on-screen text (reading), and interactive tasks (kinesthetic). It was rated highly valid (96% validity) by experts and, when tested in classrooms, led to notable gains in student understanding of the material.

Despite these advances, there remains a clear gap in the literature and practice regarding early childhood education. Few studies to date have applied a VARK-integrated interactive media approach specifically to bolster early literacy and numeracy in the preschool or early primary years. Early childhood learners have unique developmental needs and shorter attention spans, requiring that any digital or interactive intervention be carefully tailored to be age-appropriate, engaging, and aligned with foundational skill-building goals. The novelty of the present study lies in addressing this gap by combining the well-established VARK multi-modal framework with interactive learning media designed explicitly for young children's literacy and numeracy development.

In doing so, our approach responds directly to the Merdeka Curriculum's call for differentiated, engaging instructional innovations supported by digital technologies in early education. Moreover, this approach is significant in the Indonesian context, where teachers are striving to fulfil new curriculum mandates but often lack practical examples of effective, technology-enhanced activities for young learners. By developing and evaluating a VARK-based interactive learning medium for early childhood, this study aims to demonstrate a proof of concept for how such innovations can enhance early literacy and numeracy outcomes while aligning with national education reforms. It also seeks to contribute to the broader knowledge base by illuminating how multimodal learning theories can be operationalized in real classrooms to support foundational skills.

Research Method

This study applied a research and development (R&D) method to create, validate, and test a differentiated interactive learning medium based on children's learning styles to improve early literacy and numeracy skills. The development process followed the ADDIE model (Analysis, Design, Development, Implementation, and Evaluation) (Made et al., 2015). In the Implementation phase, the intervention was conducted in early childhood

classrooms over four consecutive weeks, with sessions held three times per week for about 30–35 minutes each. This schedule was designed to match young children's limited attention spans while ensuring consistent reinforcement of literacy and numeracy concepts, as recommended in early childhood education research that emphasizes short, repeated, and engaging learning activities for optimal retention and participation (Pyle & Danniels, 2017; Wasik & Hindman, 2020).

The population consisted of early childhood students aged 5–6 years enrolled in kindergarten level B, while the sample included 30 children selected purposively based on comparable developmental characteristics. The sample was divided into 15 children in the experimental group and 15 in the control group. The experimental group was taught using the differentiated interactive media, whereas the control group received instruction through conventional methods. Both groups were administered a pretest before the intervention and a posttest afterward, allowing for comparative outcomes analysis. The research employed a quasi-experimental design using a nonequivalent control group pretest-posttest structure, as summarized in Table 1.

Table 1. Research Design

Group	Pre-test	Treatment	Post-test
EG	O ₁	X ₁	O ₃
CG	O ₂	-	O ₄

(Sugiyono, 2018)

Notes:

O₁ : Pre-test of the Experimental Group
O₂ : Pre-test of the Control Group
O₃ : Post-test of the Experimental Group
O₄ : Post-test of the Control Group
X₁ : Differentiated Interactive Learning Media Intervention

Data collection techniques consisted of observations, questionnaires, and tests. Structured observations were conducted to capture children's engagement with the media and the classroom environment. Questionnaires were administered to gather feedback from teachers, experts, and students, covering aspects of the media's validity, practicality, and usability. Three types of expert validation were carried out: material validation, media validation, and practitioner validation. Each expert assessed the product using a Likert scale rubric (Nurkhalisa et al., 2025).

In addition, literacy and numeracy tests were administered as pre- and posttests to both groups. These tests were designed to align with the learning indicators of the Merdeka Curriculum and were validated by literacy and numeracy experts. Item validity was tested using Pearson Product-Moment correlation, while reliability was measured using Cronbach's Alpha to ensure internal consistency. Results indicated high reliability, with alpha values above 0.85 for literacy and numeracy instruments.

Table 2. Blueprint of Numeracy Test Instrument

Aspect	Indicator	Items
Algebra	Sorting, grouping, creating patterns, solving problems	1,2,3,4
Numbers	Recognizing numbers, comparing, and ordering numbers	5,6,7
Geometry	Understanding geometric shapes, spatial relationships, position, and 2D/3D objects	8,9,10

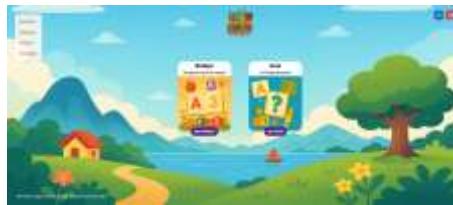
Source: Kementerian Pendidikan Kebudayaan Riset dan Teknologi (2022)

Table 3. Blueprint of Literacy Test Instrument

Aspect	Indicator	Items
Language Comprehension	Understanding multiple instructions simultaneously	1,2
Language Expression	Answering more complex questions	3
	Naming familiar letter symbols	4,5
Early Literacy	Identifying the initial sound of objects in the environment	6
	Naming groups of pictures with the same initial sound/letter	7,8
	Understanding the meaning of words in a story	9,10

Source: Kementerian Pendidikan Kebudayaan Riset dan Teknologi (2022)

Data were analyzed quantitatively with SPSS version 26. Prerequisite tests included normality testing using the Shapiro-Wilk method, homogeneity testing with Levene's Test, and multicollinearity testing to ensure independence between dependent variables. Hypothesis testing was conducted using Multivariate Analysis of Variance (MANOVA) to determine both interactive media's simultaneous and partial effects on literacy and numeracy skills. Significance levels of $p < 0.05$, supported by Wilks' Lambda and related multivariate statistics, were used as decision criteria to conclude the effectiveness of the intervention.


Results and Discussion

Development of Differentiated Interactive Learning Media

The development stage produced an interactive learning medium to accommodate diverse learning styles (visual, auditory, and kinesthetic) by integrating digital features such as images, audio narration, animations, and interactive exercises. The product was designed using the Flutter-Firebase platform to ensure flexible deployment across devices, providing children with a multisensory learning experience that aligns with the principles of differentiated instruction. This design of Gall, Borg choice was based on the recognition that early childhood learners require multimodal input to strengthen cognitive processing and sustain engagement (Gustiani, 2019). The media structure was organized into two domains (literacy and numeracy) with content mapped to the national early childhood curriculum indicators to ensure contextual and developmental relevance.

A critical scientific finding in this phase was that differentiated learning media can reduce the limitations of one-size-fits-all teaching practices, which often overlook individual learning needs. By incorporating the VARK learning styles into the media design, children could explore letters, words, and numbers through modes that matched their preferences, fostering intrinsic motivation and deeper understanding. This aligns with the theoretical basis that differentiated media enhances children's readiness by providing multiple entry points into the duplicate content (Setiawan et al., 2024). In particular, the visual features supported recognition of letters and numbers, the auditory narration aided phonological awareness, and the kinesthetic tasks promoted active exploration of numeracy concepts (Nugraha & Budiyanto, 2022).

Another important outcome was that the design of the media allowed for interactive scaffolding. Each learning activity followed a structured flow: an introductory segment, an exploratory task, and a reflective mini-assessment. For instance, literacy modules introduced letters with audio-visual cues, followed by drag-and-drop matching exercises, and concluded with short quizzes to reinforce comprehension. This iterative flow ensured that children were not passive recipients but active constructors of knowledge. Such an approach is consistent with constructivist learning principles, which emphasize meaningful engagement and scaffolding in early childhood education (Chalik & Cahyani, 2024).

Figure 1. Differentiated Interactive Media Interface

The development process also demonstrated that technology-supported differentiation provides opportunities for hybrid learning, where children can continue practicing at home with parental guidance. This expands the learning context beyond the classroom, fostering collaboration between schools and families. Compared with previous studies that relied on traditional printed media or single-mode digital tools, the integration of multimodal features within a single platform represents a novel contribution of this research (Astawan & Bayu, 2025). Earlier findings highlighted the importance of media in supporting children's literacy and numeracy but did not sufficiently address how differentiated learning styles could be systematically embedded in media design (Muawannah et al., 2023). This study advances the discourse by showing that interactive differentiation supports learning outcomes and creates a more engaging and equitable learning environment for diverse learners.

Expert Validation of the Media and Instruments

Table 4. Expert validation result

Expert Appraisal Category	Average Percentage	Qualification
Material Experts	89%	Valid
Media Experts	91%	Valid
Design Experts	90%	Valid

Assessment adapted from (Alamanda & Zainil, 2024)

Table 5. Expert instrument validation result

Instrument validation	Aiken's V	Qualification
Literacy Instrument	0,97	Very Valid
Numeracy Instrument	0,95	Very Valid

Assessment adapted from (Retnawati, 2016)

Results from the validation process indicated that the media was highly valid across all categories (Table 4 and 5). Specifically, material experts highlighted that the literacy and numeracy content corresponded with indicators of the Merdeka Curriculum, while also integrating differentiated learning strategies that supported visual, auditory, and kinesthetic modalities. Media experts emphasized that the interface design was intuitive and user-friendly, with clear visual and auditory cues to accommodate early childhood learners. Practitioner validation confirmed that the media could be easily applied in classroom practice without requiring extensive teacher training, thus ensuring practicality in real teaching settings.

The scientific interpretation of these results suggests that the high validity levels were not incidental but rooted in the systematic design process that followed the ADDIE framework. The consistency of high scores indicates that the product met theoretical and practical standards for early childhood media. In addition, the use of validated literacy and

numeracy instruments ensured that learning outcomes could be measured accurately. These instruments, which were also validated using Aiken's V, showed that each item reliably represented the intended learning constructs, reinforcing their pedagogical relevance (Sugiyono, 2018).

Similar research has shown that media validated through expert judgment and statistical indices provides higher reliability and effectiveness in classroom application (Fadila et al., 2024; Wahyuni et al., 2024). Moreover, studies on early childhood media development emphasize that expert involvement at the validation stage is essential to ensure that instructional products are both engaging and instructionally sound (Dirgantoro et al., 2024). In line with these studies, the present research demonstrates that differentiated interactive media can achieve high content validity, design appropriateness, and classroom applicability, positioning it as a credible tool to support literacy and numeracy development in early childhood education.

Practicality of the Media in the Classroom Use

The practicality of the differentiated interactive media was assessed through teacher evaluations and small-group trials with children during classroom implementation. Teachers reported that the media was easy to operate, required minimal technical guidance, and could be integrated smoothly into daily lesson plans. The interface design, including clear navigation buttons, child-friendly icons, and interactive tasks, enabled teachers and children to use the media easily. Children demonstrated enthusiasm when interacting with the media, showing high levels of participation and minimal hesitation in navigating activities. These responses illustrate that the media successfully met the practicality criteria of being accessible, intuitive, and engaging in real classroom settings.

Quantitatively, the results of practicality testing showed strong positive responses, with teacher practicality scores reaching above 95% and child responses exceeding 91%. These scores fall into the “very practical” category, indicating that the media was accepted and perceived as valuable and efficient for teaching and learning. Such outcomes reflect the ability of the media to reduce instructional complexity for teachers while supporting children’s independent engagement. The practicality results, therefore, confirm that the product does not impose additional workload on educators but rather enhances the efficiency of instructional delivery.

The scientific interpretation of these findings is that practicality is achieved because the media incorporates multimodal features in a way that aligns with children’s natural learning tendencies (Khoirunnisa et al., 2023). Children in early childhood respond positively to interactive, visually appealing, and responsive media, which explains their active engagement and favorable evaluations (Hayes, 2025). Teachers also perceived the media as practical because it provided ready-to-use content aligned with curriculum goals, allowing them to focus more on facilitation rather than preparation. These findings are consistent with prior studies emphasizing usability as a critical determinant of media adoption in early childhood classrooms. Research has shown that digital learning tools designed with intuitive interfaces and playful elements are more likely to be considered practical and sustainable in classroom application (Siswanti & Daud, 2024).

Effectiveness of the Media on Literacy and Numeracy

The effectiveness of the differentiated interactive learning media was evaluated through pretest–posttest comparisons, supported by statistical analyses of normality,

homogeneity, multicollinearity, and MANOVA. Preliminary tests confirmed that the data met statistical assumptions: the Shapiro-Wilk test indicated normal distribution for both literacy and numeracy gains ($p > 0.05$), and Levene's Test showed homogeneity of variance across groups ($p > 0.05$). Multicollinearity testing revealed tolerance values above 0.10 and VIF values below 10, confirming that literacy and numeracy functioned as independent yet related constructs suitable for simultaneous analysis. These conditions provided a robust foundation for multivariate testing of the media's effectiveness.

The MANOVA results simultaneously demonstrated a significant overall effect of the intervention on literacy and numeracy outcomes, with Wilks' Lambda = 0.247, $F = 41.256$, and $p < 0.001$. This indicates that the experimental group exposed to the differentiated media improved significantly more than the control group. The simultaneous effect highlights the strength of multimodal learning strategies in enhancing both domains together, consistent with constructivist and differentiated learning theories which emphasize multiple entry points to knowledge acquisition (Taş & Minaz, 2024).

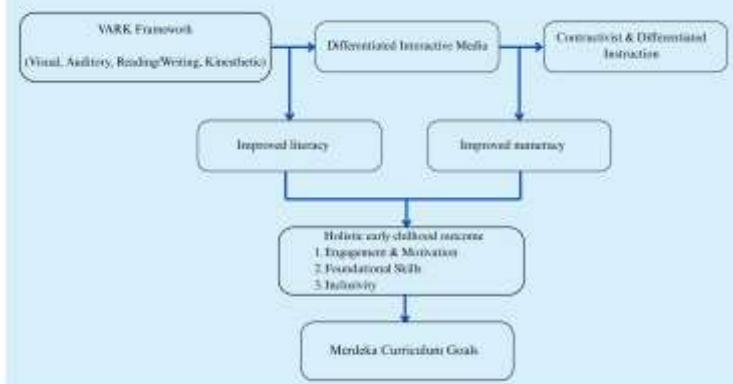
Table 6. Results of Hypothesis Testing for Literacy and Numeracy

Dependent Variable	F	Sig.	R ²	Interpretation
Numeracy	63,439	0,000	0,694	Significant, strong effect
Literacy	20,711	0,000	0,425	Significant, moderate effect

Source: Statistical analyses SPSS 26

Following the significant MANOVA results, univariate ANOVAs were conducted separately for each dependent variable to explore their individual contributions. The results (Table 6) indicate that the intervention significantly improved both numeracy and literacy, with stronger effects observed for numeracy. Numeracy gains yielded $F = 63.439$, $p < 0.001$, with $R^2 = 0.694$, suggesting that the media explained nearly 70% of the variance in numeracy outcomes. Literacy gains produced $F = 20.711$, $p < 0.001$, with $R^2 = 0.425$, indicating a substantial though comparatively lower effect. These findings suggest that interactive tasks emphasising visual and kinesthetic modalities, such as counting, patterning, and classification, contributed more directly to numeracy improvement, while literacy, though also enhanced, benefited primarily from auditory and symbolic reinforcement embedded in the media (Wahyuni et al., 2024; Davidse et al., 2014).

The interpretation of these results underscores that both the media and the assessment instruments were aligned with competencies expected at this developmental stage. The strong effects reflect a methodological commitment to ensuring that media development addressed not only technical feasibility but also pedagogical and evaluative validity, consistent with the ADDIE model (Pakaja et al., 2024). These findings also resonate with Arsyad's (2016) emphasis that instructional media should concretize abstract concepts, while Richard (2009) highlights that the storyboard and interface design followed multimedia learning principles such as coherence, signaling, and modality. By providing multimodal entry points, the media reduced cognitive load and supported symbolic representation in ways developmentally suited to early learners.


In practical terms, the medium-to-high N-Gain values also reinforced the statistical results. Numeracy achieved an N-Gain of 0.68 and literacy 0.62, which according to Hake's (2000) classification fall into the medium ($0.3 \leq g < 0.7$) to high ($g \geq 0.7$) category. These values demonstrate that the media was effective statistically and meaningful in practical classroom application, allowing children to build measurable gains in foundational competencies. The more substantial effect on numeracy may be explained by the concrete

and playful nature of the activities, which aligned with children's natural tendencies to explore through manipulation, classification, and sequencing (Wahyuni et al., 2024). Although slightly lower, literacy gains were still substantial, particularly in letter recognition, auditory comprehension, and symbolic understanding.

These results align with prior research emphasizing that multimodal, differentiated media strengthen learning engagement and outcomes. Studies such as Suci et al. (2024) and Jazriyah & Yuliantina (2025) interactive, visually appealing media enhanced comprehension and motivation in early childhood contexts. Likewise, Kewalramani et al. (2024) highlighted that multimodal digital resources foster inclusive early STEM engagement, while Kasman (2025) demonstrated that visual-interactive designs support logical reasoning and mathematical thinking. The current findings extend these insights by showing that differentiated interactive media can systematically combine these principles to produce statistically significant and practically meaningful improvements in literacy and numeracy.

Integrated Impact on Early Childhood Learning

The integrated improvement across both domains can be explained through constructivist and differentiated instruction theories. Constructivist perspectives argue that children build knowledge actively through interaction with meaningful stimuli, while differentiated instruction emphasizes adapting learning experiences to individual readiness, interest, and learning profiles (Marantika et al., 2023). The media developed in this study aligned with these principles by offering multimodal tasks designed to engage children with varied entry points, enabling them to construct an understanding of letters, sounds, numbers, and patterns through exploration and play. This alignment explains why both literacy and numeracy improved simultaneously, as children's symbolic, auditory, and kinesthetic experiences were reinforced within a coherent instructional system (Quynh, 2024).

Figure 2. Integrated Impact Model of Differentiated Interactive Media on Early Childhood Literacy and Numeracy

The VARK framework (Visual, Auditory, Reading/Writing, and Kinesthetic) was central to these outcomes. By integrating visual animations, auditory narration, interactive quizzes, and kinesthetic tasks, the media provided multiple pathways for processing information, thereby reducing cognitive load and increasing retention. Studies in early childhood education emphasize that multimodal designs not only improve engagement but also foster inclusivity by accommodating diverse learning preferences (Taş & Minaz, 2024). This aligns with Aloni et al. (2024), who demonstrated that students strongly favored visual and sensorimotor modalities in learning, while auditory preferences correlated positively with higher academic achievement. Such findings reinforce that VARK-based interventions offer

dual benefits: they respect children's natural inclinations toward hands-on and visual exploration and strengthen verbal and auditory comprehension crucial for literacy development.

Moreover, integrating VARK principles in early childhood reflects constructivist pedagogy, where learning is scaffolded through active exploration and multiple sensory channels. Research has shown that when learners are given opportunities to engage with multimodal representations, they not only retain content more effectively but also develop deeper conceptual understanding (DeStefano & LeFevre, 2004; Freeman et al., 2014). This is particularly vital for early children, as their cognitive flexibility allows them to shift between modalities, making differentiated instruction more impactful. Thus, embedding VARK in digital media is a cognitively grounded and developmentally appropriate approach to strengthening literacy and numeracy in early years.

The broader implication of these findings is significant for implementing the *Merdeka Curriculum*. By prioritizing literacy and numeracy as foundational competencies, the curriculum encourages flexible and contextualized approaches to teaching that respect children's diverse learning needs. The results of this study provide empirical evidence that differentiated, multimodal digital media can serve as an effective tool for achieving these goals, while also cultivating the attributes of the *Profil Pelajar Pancasila* such as curiosity, critical thinking, and collaboration. Furthermore, the alignment with experiential learning theory (Kolb) and sociocultural theory (Vygotsky's ZPD) strengthens the case for adopting such media as part of everyday classroom practice. Interactive tasks support individual exploration and facilitate collaborative learning between peers and teacher scaffolding, reinforcing the Merdeka Curriculum's holistic vision (Rigopouli et al., 2025; Zhang, 2023). In sum, the integrated impact of this study demonstrates that differentiated interactive media can effectively improve literacy and numeracy in tandem by blending VARK principles with constructivist and differentiated instruction approaches. Beyond measurable statistical gains, the results suggest a practical pathway for embedding digital multimodal resources into early childhood classrooms as a core strategy for delivering the Merdeka Curriculum.

Conclusion

This study concludes that differentiated interactive learning media based on the VARK framework is valid, practical, and effective in improving early literacy and numeracy. Expert validation confirmed high content and design validity, while classroom trials demonstrated ease of use and strong child engagement. Statistical analyses showed significant improvements in both domains, with numeracy achieving stronger effects due to concrete and kinesthetic tasks, and literacy improving through integrated audio-visual support. Overall, the media provides a scientifically grounded and pedagogically relevant innovation that supports the *Merdeka Curriculum* in strengthening foundational skills for early childhood learners.

The findings of this study carry significant conceptual implications for early childhood education research. By integrating the VARK learning style model into interactive media, the study extends constructivist and differentiated instruction theories with empirical evidence from early literacy and numeracy contexts. The results demonstrate how multimodal entry points (visual, auditory, reading/writing, and kinesthetic) reduce cognitive load, foster inclusivity, and support symbolic representation in developmentally appropriate ways. This contributes to the broader discourse on multimodal pedagogy by providing a validated framework that operationalizes theoretical constructs into a coherent instructional design for early learners.

In practical terms, the study highlights how differentiated interactive media can be seamlessly integrated into early childhood classrooms under the Merdeka Curriculum. The high practicality scores from both teachers and children indicate that the media is user-friendly, requires minimal technical training, and reduces teacher workload while enhancing student engagement. The ability of the media to be used flexibly at school and at home also demonstrates its relevance for teacher-parent collaboration, supporting continuity of learning beyond formal settings. These practical implications reinforce the potential of this innovation as a scalable and sustainable solution to strengthen foundational literacy and numeracy in Indonesian early childhood education.

Recommendation

Based on the findings and considering the study's limitations, several recommendations can be made. When using the differentiated interactive media, young learners should be accompanied by teachers or parents, since children aged 5–6 years still require guidance to explore according to their individual learning styles while maintaining motivation. Teachers are encouraged to act not only as users but also as facilitators who adapt media use to each child's literacy and numeracy levels, supported by continuous training in digital pedagogy and differentiated instruction. Schools and foundations must provide infrastructure, flexible scheduling, and collaborative opportunities with media developers and academics to ensure sustainable implementation. Future researchers may expand the scope to larger and more diverse populations across different regions, conduct longitudinal studies to evaluate retention and transfer of learning, and integrate broader developmental dimensions such as socio-emotional growth, creativity, and communication to enrich the holistic impact of differentiated digital media in early childhood education.

Acknowledgment

The author gratefully acknowledges the teachers of TK Universal Denpasar for their participation and cooperation during data collection, which made this study possible. Sincere appreciation is also extended to Universitas Pendidikan Ganesha (Undiksha) for providing academic guidance and institutional support throughout the research process.

References

Adawiyah, E. R., Winarno, A., & Onia, S. I. (2024). Effectiveness of Interactive Learning Media Development Based on Articulate Storyline 3 in Elementary School Education. *EDUCARE: Journal of Primary Education*, 5(2), 105–118. <https://doi.org/10.35719/educare.v5i2.253>

Agung Nugraha, A., & Budiyanto, U. (2022). Adaptive E-Learning System Berbasis Vark Learning Style dengan Klasifikasi Materi Pembelajaran Menggunakan K-NN (K-Nearest Neighbor). *Technomedia Journal*, 7(2), 248–261. <https://doi.org/10.33050/tmj.v7i2.1900>

Alamanda, L., & Zainil, M. (2024). Pengembangan Media Pembelajaran Berbantuan Aplikasi Math City Map Pada Materi Luas Bangun Datar Di Kelas Iv Sd. *Pendas: Jurnal Ilmiah Pendidikan Dasar*, 9(September).

Aloni, O., Zion, M., & Spektor-Levy, O. (2024). Students' voices—the dynamic interactions between learning preferences, gender, learning disabilities, and achievements in science studies. In *Instructional Science* (Vol. 52, Issue 5). Springer Netherlands. <https://doi.org/10.1007/s11251-024-09666-8>

Annisa Wahyuni, Hasbi, M., & Kanada, R. (2024). Implementation of the Independent Curriculum: Educational Innovation that Encourages Learning Independence. *International Journal of Applied Educational Research (IJAER)*, 2(5), 365–378. <https://doi.org/10.59890/ijaer.v2i5.2544>

Arsyad, A. (2016). *Media Pengajaran*. Jakarta: Rajagrafindo Persada.

Astawan, I. G., & Bayu, G. W. (2025). Development of Experimental Digital Comics to Stimulate Kindergarteners ' Science Process Skills. *Jurnal Penelitian Pendidikan IPA*, 11(7), 540–552. <https://doi.org/10.29303/jppipa.v11i7.11696>

Ayodele A. Ogegbo, & Adebunmi Aina. (2020). Early childhood development teachers' perceptions on the use of technology in teaching young children. *South African Journal of Childhood Education*, 10(1), 1–10.

Chalik, C., & Cahyani, I. (2024). Perancangan Board Game Knowledge Dash Sebagai Media Pendukung Program Literasi dan Numerasi Sekolah Dasar. *MAVIS: Jurnal Desain Komunikasi Visual*, 6(02), 149–161. <https://doi.org/10.32664/mavis.v6i02.1465>

Davidse, N. J., De Jong, M. T., & Bus, A. G. (2014). Explaining common variance shared by early numeracy and literacy. *Reading and Writing*, 27(4), 631–648. <https://doi.org/10.1007/s11145-013-9465-0>

Dermitzaki, I. (2025). Fostering Elementary School Students' Self-Regulation Skills in Reading Comprehension: Effects on Text Comprehension, Strategy Use, and Self-Efficacy. *Behavioral Sciences*, 15(2). <https://doi.org/10.3390/bs15020101>

DeStefano, D., & LeFevre, J. (2004). The role of working memory in mental arithmetic. *European Journal of Cognitive Psychology*, 16(3), 353–386. <https://doi.org/10.1080/09541440244000328>

Dirgantoro, A., Purwananti, Y. S., & Hartanto, S. (2024). Developing RENATAMA (Reyog Kendang & Etnomathematics) Based on Digital Board Game with Cognitive Psychology Content to Improve Numeracy Literacy. *Jurnal Pembelajaran, Bimbingan, Dan Pengelolaan Pendidikan*, 5(1), 8. <https://doi.org/10.17977/um065.v5.i1.2025.8>

Fadila, A., Hakim, R., Putra, R. W. Y., & Ambarwati, R. (2024). Development of Teaching Materials Oriented to Numeracy Literacy and Socio-Cultural Literacy for Madrasah Ibtidaiyah. *Jurnal Pendidikan Matematika (Kudus)*, 7(2), 227. <https://doi.org/10.21043/jpmk.v7i2.29232>

Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., & Wenderoth, M. P. (2014). Active learning increases student performance in science, engineering, and mathematics. *Proceedings of the National Academy of Sciences of the United States of America*, 111(23), 8410–8415. <https://doi.org/10.1073/pnas.1319030111>

Gustiani, S. (2019). Research and Development (R&D) Method as a Model Design in Educational Research and Its Alternatives. *Holistics Journal*, 11(2), 12–22. <https://jurnal.polsri.ac.id/index.php/holistic/article/view/1849>

Hake, R. R. (2000). Towards Paradigm Peace in Physics Education Research. *The Annual Meeting of the American Educational Research Association*, 1989, 1–18.

Hayes, D. (2025). Early child development. *Children & Young People Now*, 2025(1), 27–29. <https://doi.org/10.12968/cypn.2025.1.27>

Hidayat, D. N., Fitriah, Mahlil, & Mason, J. (2023). Factors Impacting English Teachers' Creativity in Teaching English as a Foreign Language in Indonesia. *Studies in English Language and Education*, 10(1), 155–173. <https://doi.org/10.24815/siele.v10i1.26145>

Hossain, K. I. (2024). Literature-based language learning: Challenges, and opportunities for

English learners. Ampersand, 13, 100201.
<https://doi.org/https://doi.org/10.1016/j.amper.2024.100201>

Irmaningrum, R. N., Zativalen, O., & Ati MZ, A. . S. (2023). the Development of E-Comics Media Based on the Vark Model To Measure the Understanding of Elementary School Students. *EduHumaniora / Jurnal Pendidikan Dasar Kampus Cibiru*, 15(1), 85–96. <https://doi.org/10.17509/eh.v15i1.51780>

Jazriyah, H., & Yuliantina, I. (2025). Development of Learning Media Based On Positive Discipline to Improve the Character of Early Childhood. *Journal of Scientific Research, Education, and Technology (JSRET)*, 4(1), 665–683. <https://doi.org/10.58526/jsret.v4i1.742>

Jemmy Pakaja, A., H., & Alfito Paputungan. (2024). Development of Android-Based Interactive Learning Media on Computer Assembly Material with the ADDIE Model Approach. *Journal of Innovation Information Technology and Application (JINITA)*, 6(2), 130–140. <https://doi.org/10.35970/jinita.v6i2.2436>

Kartika, A. (2024). Unveiling the Merdeka Curriculum in Indonesia: Insights from Educators and Policymakers on Its Effectiveness and Implications. *Interdisciplinary Journal and Hummanity (INJURITY)*, 3(11), 802–817. <https://doi.org/10.58631/injury.v3i11.1378>

Kasman, A. (2025). The Role of Gen Z Students in Using Child – Friendly Digital Media in The Early Childhood Learning Process. *Edukasi: Jurnal Pendidikan Dan Pengajaran*, 12(01), 110–123. <https://doi.org/10.19109/et656z14>

Kementerian Pendidikan Kebudayaan Riset dan Teknologi. (2022). *Capaian Pembelajaran Pada Pendidikan Anak Usia Dini Jenjang Pendidikan Dasar dan Jenjang Pendidikan Menengah Pada Kurikulum Merdeka*. Jakarta Pusat: Kementerian Pendidikan.

Kewalramani, S., Aranda, G., Sun, J., Richards, G., Hobbs, L., Xu, L., Millar, V., Dealy, B., & Van Leuven, B. (2024). A Systematic Review of the Role of Multimodal Resources for Inclusive STEM Engagement in Early-Childhood Education. *Education Sciences*, 14(6). <https://doi.org/10.3390/educsci14060604>

Khoirunnisa, K., Nurhayati, E., & Jazriyah, J. (2023). The Effect of Using Number Piggy Bank Media on the Symbolic Thinking Ability of 5-6 Years Old Children. *GENIUS Indonesian Journal of Early Childhood Education*, 4(2), 193–208. <https://doi.org/10.35719/gns.v4i2.146>

Lee, Y. J. (2019). Integrating multimodal technologies with VARK strategies for learning and teaching EFL presentation: An investigation into learners' achievements and perceptions of the learning process. *Australian Journal of Applied Linguistics*, 2(1), 17–31. <https://doi.org/10.29140/ajal.v2n1.118>

Li, H., Zhang, X., Li, Z., Wen, J., & Tan, X. (2022). A Review of Research on Tree Risk Assessment Methods. *Forests*, 13(10), 1556. <https://doi.org/10.3390/f13101556>

Made, T. I., Jampel, I. N., & Pudjawan, K. (2015). Pengembangan buku ajar model penelitian pengembangan dengan model ADDIE. *Seminar Nasional Riset Inovatif IV*, 208, 208–216.

Marantika, J. E. R., Tomasouw, J., Wenno, E. C., Studi, P., Bahasa, P., & Pattimura, U. (2023). Implementasi Pembelajaran Berdiferensiasi di Kelas. *German Für Gesellschaft (J-Gefüge)*, 2(April), 1–8.

Muawanah, U., Marini, A., & Sarifah, I. (2023). Measuring Digital Learning Trends and Accessibility Convenience in Enhancing Early Childhood Literacy and Language Proficiency: The Role of Smart Book Media from the Perspective of Banten Javanese Language. *International Journal of Current Science Research and Review*, 06(12),

7660–7674. <https://doi.org/10.47191/ijcsrr/v6-i12-23>

Muguwe, E., Manzuzu, & Shoko, N. (2024). Imparting Literacy Skills To Early Childhood Development Learners In Zimbabwean Rural Settings: Towards Achieving Educational Equity. *Lonaka JoLT*, 13(2), 74–92.

Ningsi, N., & Hartono, H. (2025). Developing Interactive Learning Media to Enhance Elementary School Students' Learning Motivation. *EDUCARE: Journal of Primary Education*, 6(1), 81–96. <https://doi.org/10.35719/educare.v6i1.291>

Nurkhalisa, N., Rusmayadi, R., Herman, H., Herlina, H., Hajarah, H., & Hakim, A. (2025). The Development of Memory Game Media for Improving Letter and Number Recognition Skills in Early Childhood. *Indonesian Journal of Early Childhood Educational Research (IJECER)*, 4(1), 40. <https://doi.org/10.31958/ijecer.v4i1.15215>

OECD. (2023). PISA 2022 results (Volume I): The state of learning and equity in education. In *OECD Publishing*. <https://doi.org/https://doi.org/10.1787/53f23881-en>

Ogegbo, A. A., & Aina, A. Y. (2022). Fostering the Development of 21St Century Competencies Through Technology in Young Children: Perceptions of Early Childhood Educators. *Education and New Developments*, 323–327. <https://doi.org/10.36315/2022v2end073>

Oya, A., Suharta, I. G. P., Lasmawan, I. W., Parmiti, D. P., Jampel, I. N., & Candiasa, I. M. (2024). A Bibliometric Analysis of the Impact of Project-Based Assessment on Conceptual Understanding in STEM Education. *Journal of Science Learning*, 7(3), 227–238. <https://doi.org/10.17509/jsl.v7i3.69309>

Parker, R., Thomsen, B. S., & Berry, A. (2022). Learning Through Play at School – A Framework for Policy and Practice. *Frontiers in Education*, 7(February), 1–12. <https://doi.org/10.3389/feduc.2022.751801>

Pyle, A., & Dannells, E. (2017). A Continuum of Play-Based Learning: The Role of the Teacher in Play-Based Pedagogy and the Fear of Hijacking Play. *Early Education and Development*, 28(3), 274–289. <https://doi.org/10.1080/10409289.2016.1220771>

Retnawati, H. (2016). *Analisis Kuantitatif Instrumen Penelitian (Panduan Peneliti, Mahasiswa dan Psikometri)*. Parama Publishing.

Richard, E. M. (2009). Multimedia Learning. In *Cambridge University Press* (Vol. 2). https://doi.org/10.1057/9780230800601_4

Rigopouli, K., Kotsifakos, D., & Psaromiligos, Y. (2025). Vygotsky's Creativity Options and Ideas in 21st-Century Technology-Enhanced Learning Design. *Education Sciences*, 15(2). <https://doi.org/10.3390/educsci15020257>

Sedana Suci, I. G., Marsono, Suyanta, I. W., Sindu Putra, I. B. K., Kamalia Jaya, P., & Eka Suciari Putri, I. A. (2024). Mini Box Theater: Development and Validation of an Innovative Storytelling Media for Children Aged 5-6 Years. *Golden Age: Jurnal Ilmiah Tumbuh Kembang Anak Usia Dini*, 9(3), 487–501. <https://doi.org/10.14421/jga.2024.93-10>

Setiawan, A. V., Meilina, S. A., Hutaikur, S. M., Khairunnisa, F. S., Arofah, A. N., & Ardiansyah, A. S. (2024). Enhancing Numeracy Literacy through CBL-STEM: Developing Differentiated Learning Materials with Augmented Reality and Articulate Storyline Integration. *AL-ISHLAH: Jurnal Pendidikan*, 16(4), 5611–5627. <https://doi.org/10.35445/alishlah.v16i4.5789>

Siswanti, D. N., & Daud, M. (2024). Pemanfaatan Multimedia Pembelajaran Interaktif bagi Guru PAUD. *IMEIJ : Indo-MathEdu Intellectual Journal*, 5(5), 1–19.

Sugiyono. (2018). Metode Penelitian Kombinasi. Alfabetika. In *Metode Penelitian Kualitatif*

(Vol. 28, Issue 17). CV.Alfabeta.

Taş, H., & Minaz, M. B. (2024). The Effects of Learning Style-Based Differentiated Instructional Activities on Academic Achievement and Learning Retention in the Social Studies Course. *SAGE Open*, 14(2), 1–14. <https://doi.org/10.1177/21582440241249290>

Viet Quynh, P. (2024). Instruction Based on the Vark Learning Styles of Primary Students in Science. *Journal of Science Educational Science*, 69(3), 119–128. <https://doi.org/10.18173/2354-1075.2024-0069>

Wahyuni, S., Iqbal, M., & Baharuddin. (2024). Evaluasi efektivitas penerapan kurikulum merdeka dalam meningkatkan hasil belajar dan keterampilan literasi siswa sekolah dasar. *Idarah Tarbawiyah: Journal of Management in Islamic Education*, 5(3), 360–368. <https://doi.org/10.32832/itjmie.v5i3.16736>

Wasik, B. A., & Hindman, A. H. (2020). Increasing preschoolers' vocabulary development through a streamlined teacher professional development intervention. *Early Childhood Research Quarterly*, 50, 101–113. <https://doi.org/https://doi.org/10.1016/j.ecresq.2018.11.001>

Zhang, Z. (2023). Collaborative Learning in Social Constructivism: Promoting English Learning in a Secondary Classroom in China. *Journal of Education and Educational Research*, 3(3), 1–5. <https://doi.org/10.54097/jeer.v3i3.9509>