ARTIKEL FARAH PUSPITA F1071151022 - Bioscientist.docx

by Cek Turnitin


Submission date: 06-Jul-2024 09:14AM (UTC+0700)

Submission ID: 2412983355

File name: ARTIKEL_FARAH_PUSPITA_F1071151022_-_Bioscientist.docx (1.84M)

Word count: 4623

Character count: 31550

KELAYAKAN MULTIMEDIA INTERAKTIF DENGAN ADOBE ANIMATE CC PADA MATERI PENCERNAAN MAKANAN

Fara Puspita1, Kurnia Ningsih2*, & Eko Sri Wahyuni3

^{12,83} Program Studi Pendidikan Biologi, Fakultas Keguruan dan Ilmu Pendidikan, Universitas Tanjungpura, Jalan Prof.Dr.Hadari Nawawi, Pontianak, Kalimantan Barat 78124, Indonesia

*Email:kurnia.ningsih@fkip.untan.ac.id

Submit: dd-mm-yyyy; Revised: dd-mm-yyyy; Accepted: dd-mm-yyyy; Published: dd-mm-yyyy

ABSTRAK: Pencernaan makanan merupakan proses pemecahan makanan yang melibatkan sistem pencernaan dan enzim percernaan yang tidak dapat diamati oleh mata secara langsung. Hal ini menyebabkan materi pencernaan makanan menjadi materi yang abstrak dalam pembelajaran di kelas. Sifat abstrak suatu materi dapat dikonkretkan dengan pembelajaran yang menggunakan multimedia interaktif untuk menjadikan pembelajaran menjadi lebih mudah dipahami dan bermakna bagi peserta didik. Penelitian ini dilakukan untuk mengetahui validitas dan reliabilitas multimedia interaktif dengan Adobe Animate CC pada materi pencernaan makanan. Metode penelitian yang digunakan dalam penelitian ini adalah Penelitian dan Pengembangan atau Research and Development (R&D). Model pengembangan yang digunakan yaitu model pengemban 7n 3-D (Three D) dengan tahap-tahap yaitu pendefinisian, perancangan, dan pengembangan. Validasi dilakukan oleh 5 orang validator yang dipilih secara purposive sampling dengan mempertimbangkan bahwa validator tersebut merupakan (8) i di bidang pendidikan dan media, terutama media berbasis teknologi. Validasi dilakukan dengan empat aspek penilaian, yaitu aspek kelayakan isi materi, aspek kebahasaan, aspek penyajian, dan aspek karakteristik multimedia interaktif. Penilaian dari validator kemudian dianalisis dengan menggunakan analisis validasi Aiken dan diukur reliabilitasnya menggunakan Koefisien Korelasi Intra Kelas. Hasil validasi menunjukkan bahwa multimedia interaktif dinyatakan valid dengan rata-rata nilai validasi 0.93 dengan 5 skala Likert. Hasil uji reliabilitas dengan program SPSS Statistic diperoleh nilai 0.788 yang menunjukkan reliabilitas yang excellent. Dengan demikian, dapat disimpulkan bahwa multimedia interaktif ini valid dan layak digunakan dalam pembelajaran.

Kata Kunci: Multimedia Interaktif, Adobe Animate CC, Pencernaan Makanan

ABSTRACT (10 pt italic): Food digestion is breaking down food involving digestive system and enzymes that cannot be observed directly. This makes the topic of food digestion an abstract concept in classroom learning. The abstract nature of this topic can be made more concrete with interactive multimedia learning, making the learning process easier to understand and more meaningful for students. This study was conducted to determine the validity and reliability of interactive multimedia using Adobe Animate CC on food digestion. The research method used in this study is Research and Development (R&D). The development model used is the 3-D (Three D) development model with stages including definition, design, and development. Validation was carried out by 5 validators selected through purposive sampling, considering that these validators are experts in education and media, especially technology-based media. Validation was conducted with four assessment aspects: content feasibility, language, presentation, and interactive multimedia characteristics. The validators' assessments were then analyzed using Aiken's validation analysis and the reliability was measured using the Intraclass Correlation Coefficient. The validation results showed that the interactive multimedia was valid with an average validation score of 0.93 on a 5-point Likert scale. The reliability test results with SPSS Statistics showed a value of 7.88, indicating excellent reliability. Thus, it can be concluded that this interactive multimedia is valid and suitable for use in

Keywords: Interactive Multimedia, Adobe Animate CC, Digestion of Food.

Email: bioscientist@undikma.ac.id

How to Cite: Puspita, F., Ningsih, K., & Wahyuni, E. S. (2024). Kelayakan Multimedia Interaktif dengan Adobe Animate C pada Materi Pencernaan Makanan. Bioscientist: Jurnal Ilmiah Biologi, Volume(Issue), xx-yy. https://doi.org/10.33394/bioscientist.vxiy.xxxx

Bioscientist : Jurnal Ilmiah Biologi is Licensed Under a CC BY-SA <u>Creative Commons</u> Attribution-ShareAlike 4.0 International License.

PENDAHULUAN

Multimedia merupakan gabungan dari berbagai macam sedia untuk menyampaikan pesan. Multimedia dapat berupa format *file* seperti teks, gambar (vector atau bitmap), grafik, sound (suara), animasi, video, interaksi, dan lain-lain yang telah dikemas menjadi file digital (komputerisasi) (Munir, 2012). Beragamnya jenis media yang digunakan dalam sebuah multimedia dapat dimanfaatkan guru sebagai alat bantu mengajar (teaching aids) untuk menurunkan sifat abstrak materi yang dipelajari sehingga menjadi lebih konkret. Sejalan dengan Sari (2019) yang mengatakan bahwa pengalaman konkret dan daya serap belajar siswa dapat dibantu dengan alat bantu visual.

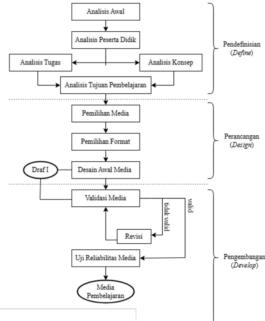
Salah satu materi yang bersifat abstrak yaitu materi pencernaan makanan. Pencernaan makanan merupakan proses pemecahan makanan yang melibatkan sistem pencernaan dan enzim pencernaan. Sistem pencernaan manusia tidak dapat dilihat secara langsung karena terjadi di dalam tubuh manusia, sedangkan menurut Urry, Cain, Wasserman, Minorsky, & Reece (2016), enzim merupakan makromolekul dengan struktur utama protein yang tentu saja juga tidak dapat dilihat oleh mata manusia. Dengan demikian, gambar dan animasi (gambar bergerak) dapat menurunkan sifat abstrak tersebut sehingga akan memudahkan peserta didik dalam memahaminya.

Pengalaman belajar juga perlu dikonstruk dengan keterlibatan peserta didik yang lebih tinggi, seperti terlibat aktif dalam percobaan/ praktikum. Oleh karena itu, guru perlu memfasilitasi siswa dengan media pembelajaran yang membuat pengalaman belajar lebih konkret.

Multimedia interaktif menjadi pilihan yang baik sebagai media pembelajaran karena memiliki kelebihan yaitu memuat jenis media yang cocok untuk peserta didik dengan gaya visual belajar audio, visual, maupun kinestetik. Selain itu, pembelajaran menggunakan multimedia interaktif juga telah terbukti lebih efektif dibandingkan pembelajaran konvensional (Hidayati, 2017; Oktavia, 2020).

Permasalahan yang ditemukan peneliti yaitu pada materi ini guru IPA di SMPS Pelita Cemerlang belum menggunakan media pembelajaran yang bersifat interaktif (multimedia interaktif) yang dapat membantu mengkonkretkan atau memvisualisasikan suatu konsep yang bersifat abstrak. Peserta didik mengalami kesulitan dalam memahami konsep enzim sebagai biokatalis dan jenis-jenis enzim pada setiap tahap pencernaan. Dari keseluruhan materi yang ada pada bab Pencernaan Makanan, ditemukan bahwa materi yang dianggap paling sulit yaitu submateri Enzim Pencernaan dengan persentase terbanyak yaitu sebanyak 66% peserta didik. Selain itu, sebanyak 52,1% peserta didik mengalami kesulitan pada

Email: bioscientist@undikma.ac.id


submateri Absorpsi dan Defekasi dan sebanyak 31,9% peserta didik mengalami kesulitan pada submateri Sistem Pencernaan. Sebanyak 7,4% peserta didik mengalami kesulitan pada submateri protein dan lemak, sebanyak 6,4% peserta didik mengalami kesulitan pada submateri karbohidrat, dan sebanyak 5,3% peserta didik mengalami kesulitan pada submateri makanan seimbang. Dengan demikian, pada penelitian ini peneliti mengembangkan multimedia interaktif yang berfokus pada tiga submateri dengan persentase terbesar yaitu submateri enzim, sistem pencenaan, dan absorpsi dan defekasi.

Multimedia interaktif dapat dikembangkan menggunakan program *Adobe Animate* CC karena merupakan program khusus yntuk membuat animasi yang dapat menghasilkan keluaran berupa situs web yang interaktif (Mustaqim & Prianto, 2015). Hal ini sesuai dengan kebutuhan untuk mengembangkan media pembelajaran yang mudah diakses dan yang dapat di-*custom* sesuai dengan materi pembelajaran.

Dengan demikian, peneliti mempertimbangkan penyelesaian atas permasalahan yang telah dipaparkan dengan mengembangkan multimedia interaktif pada materi pencernaan makanan dengan penelitian berjudul "Kelayakan Multimedia Interaktif dengan *Adobe Animate CC* pada Materi Pencernaan Makanan".

METODE

Metode penelitian yang digunakan yaitu metode Research and Development (26D) dengan model pengembangan 3-D, modifikasi dari 4-D. Modifikasi dilakukan karena keterbatasan waktu penelitian, sehingga tahap-tahap penelitian yang dilakukan yaitu pendefinisian (define), perancangan (design), dan pengembangan (develop), tanpa diseminasi/penyebaran (disseminate). Berikut adalah bagan prosedur pengembangan model 3-D yang dilakukan pada penelitian ini.

Bioscientist: Jurnal Ilmiah Biologi E-ISSN 2654-4571; P-ISSN 2338-5006 A plume x, Issue y, Month Year; Page, xx-yy Email: bioscientist@undikma.ac.id

\longrightarrow	: alur langkah-langkah dalam prosedur
	: proses yang berkaitan dengan
	: langkah-langkah
	: hasil / produk perancangan atau pengembangar

Gambar 1. Prosedur pengembangan model 3-D

(diadaptasi dari Dzikro & Dwiningsih, 2021)

Setelah perancangan media, dilakukan uji validitas dan uji relibilitas. Uji validitas dilakukan untuk memvalidasi isi materi dan memvalidasi media itu sendiri. Hasil validasi digunakan untuk melaukan revisi sebelum diperoleh produk akhir. Sedangkan uji reliabilitas dilakukan menggunakan Koefisien Korelasi Intra Kelas (Intraclass Correlation Coefficient/ ICC) untuk mengukur reliabilitas antar validator.

Hasil validasi dianalisis menggunakan formula Aiken's V sebagai berikut.

$$V = \frac{\sum S}{[n(c-1]]}$$

$$S = r - lo$$

Keterangan:

V = nilai validasi

Lo = angka penilaian validasi terendah, 1

c = angka penilaian validasi tertinggi, yaitu 5

r = angka yang diberikan oleh validator

(Aiken dalam Hendryadi, 2017).

Hasil perhitungan validasi kemudian disesuaikan dengan standar validasi yang terdapat pada tabel Aiken's V. Validator atau rater yang menilai sebanyak 5 orang, sedangkan item yang dinilai menggunakan 5 pilihan penilaian skala Likert yaitu 5) Sangat baik, 4) Baik, 3) Cukup, 2) Buruk, 1) Sangat Buruk. Dengan demikian, dengan peluang error sebesar 5%, berdasarkan tabel Aiken's V maka setiap item dinilai valid apabila $V \ge 0.80$. Analisis Aiken's V dilakukan menggunakan aplikasi Microsoft E_0 el.

Uji reliabilitas dilakukan mengguna Tan Koefisien Korelasi Intra Kelas (Intraclass Correlation Coefficient / TCC) dengan bantuan program IBM SPSS Statistics versi 29.0.0.0. Reliabilitas yang diperoleh diinterpretasi menggunakan kriteria berikut.

Tabel 1 Kriteria Interpretasi ICC

ICC Value	Interpretation
<0.4	Poor reliability
$0.4 \le ICC < 0.75$	Fair to good reliability
\geq 0.75	Excellent reliability

Rosner (dalam Zaki, 2017).

Email: bioscientist@undikma.ac.id

HASIL DAN PEMBAHASAN

Penelitian ini bertujuan untuk menghasilkan sebuah produk penelitian berupa aplikasi multimedia interaktif dalam bentuk HTML5 yang dibuat menggunakan *Adobe Animate CC* untuk siswa SMP kelas VIII semester 1 pada materi pencernaan makanan.

Secara garis besar, aplikasi ini terdiri atas mainpage, introduction pages, homepage, guidepage, meeting 1, meeting 2, meeting 3, references, dan developer profile. Mainpage merupakan halaman utama atau halaman pertama yang muncul ketika aplikasi dibuka, meliputi judul aplikasi dan tombol start. Introduction pages terdiri atas beberapa halaman yang berisi perkenalan mengenai aplikasi multimedia interaktif yang sedang digunakan dan rekomendasi langkah-langkah yang dapat dilakukan saat menggunakan aplikasi multimedia interaktif. Homepage merupakan halaman menu yang menyediakan 6 tombol menu utama yaitu guide, meeting 1, meeting 2, meeting 3, references, dan developer profile. Guidepage merupakan halaman yang berisi petunjuk tombol-tombol navigasi yang ditemukan pada aplikasi multimedia interaktif. Meeting 1 merupakan merupakan halaman yang berisi materi, aktivitas dan kuis evaluasi yang berkaitan dengan subtopik enzim (enzyme). Meeting 2 merupakan halaman yang berisi materi, aktivitas dan kuis evaluasi yang berkaitan dengan subtopik sistem pencernaan (the digestive system). Meeting 3 merupakan halaman yang berisi materi, aktivitas dan kuis evaluasi yang berkaitan dengan subtopik penyerapan dan pembuangan zat sisa (absorption and egestion). References merupakan halaman yang berisi daftar sumber materi dan aktivitas yang digunakan pada aplikasi multimedia interaktif. Sedangkan developer profile merupakan halaman yang berisi data profil pengembang multimedia interaktif.

Multimedia interaktif yang dikembangkan menggunakan *Adobe Animate CC* ini dibuat dengan tujuan menjadi media pembelajaran alternatif yang dapat dimanfaatkan dalam pembelajaran, teruta pada materi pencernaan makanan. Pengembangan multimedia interaktif ini dilakukan menggunakan model pengembangan 3-D yang merupakan modifikasi dari model pengembangan 4-D (Dzikro & Dwiningsih, 2021). Dengan kata lain, pengembangan multimedia interaktif ini terbatas dalam 3 tahap saja yaitu tahap pendefinisian (*define*), tahap perancangan (*design*), dan tahap pengembangan (*develop*). Penelitian ini dilakukan tanpa keempat yaitu tahap diseminasi/penyebaran (*disseminate*).

Tahap pertama yaitu tahap pendefinisian. Pada tahap pendefinisian, peneliti melakukan analisis awal (*initial analysis*), analisis peserta didik (*learner analysis*), analisis tugas (*task analysis*), analisis konsep (*concept analysis*) dan analisis tujuan pembelajaran (*specifying instructional objectives*). Pada analisis awal, peneliti menemukan permasalahan dasar sehingga dikembangkannya multimedia interaktif ini. Permasalahan dasar bermula dari penemuan bahwa media pembelajaran yang digunakan di sekolah pada materi pencernaan makanan tidak bersifat interaktif bagi peserta didik. Media pembelajaran yang digunakan yaitu video penjelasan materi, yang relatif singkat dan padat sehingga siswa mengalami kesulitan mengidentifikasi enzim pencernaan yang bekerja di organ yang berbeda, serta memahami proses yang ada pada pencernaan makanan manusia.

Email: bioscientist@undikma.ac.id

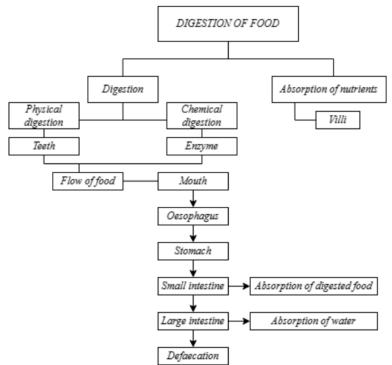
Materi pencernaan makanan mempelajari tentang enzim pencernaan yang bersifat abstrak karena enzim itu sendiri tidak dapat diamati oleh mata secara langsung. Hal ini menyulitkan siswa untuk memahami konsep enzim pencernaan sebagai katalis yang mempercepat reaksi-reaksi metabolisme dalam tubuh (biokatalis).

Selama pandemi, pembelajaran yang lebih bermakna dapat diberikan kepada peserta didik dengan memanfaatkan teknologi dan internet melalui media pembelajaran yang bersifat interaktif, mudah diakses dan dapat dioperasikan secara mandiri. Video penjelasan materi yang singkat perlu dilengkapi dengan animasi yang dapat menjelaskan suatu proses pertahapnya. Media pembelajaran juga perlu dilengkapi dengan eksperimen yang dapat dilakukan secara daring, sehingga dapat menyesuaikan dengan kondisi yang mengharuskan pembelajaran tanpa tatap muka. Evaluasi soal juga perlu ditambahkan untuk mengetahui sejauh mana siswa memahami materi tersebut.

Dengan demikian, permasalahan ini mendasari perlunya pengembangan media pembelajaran seperti multimedia interaktif yang mendukung visualisasi enzim pencernaan yang bersifat abstrak dan proses pencernaan makanan yang terjadi di dalam tubuh manusia. Multimedia interaktif ini diharapkan dapat dioperasikan secara mandiri oleh peserta didik sehingga tidak selalu bergantung pada penjelasan guru.

Setelah dilakukan analisis awal, peneliti melanjutkan penelitian dengan analisis peserta didik. Peserta didik kelas VIII SMPS Pelita Cemerlang Pontianak memiliki rentang usia 12-14 tahun. Sesuai teori perkembangan kognitif oleh Piaget, peserta didik pada kelompok usia itu berada dalam tahap operasi formal (formal operational) sehingga pada tahap ini peserta didik sudah bisa berpikir dengan cara lebih abstrak, logis, dan idealistik (Marinda, 2020). Dengan demikian peserta didik ini seharusnya dapat menyelesaikan masalah lebih baik daripada peserta didik yang masih berada dalam tahap operasi konkrit (concrete operational).

Namun pada kenyataannya ditemukannya permasalahan dari peserta didik kelas VIII SMPS Pelita Cemerlang Pontianak. Peserta didik mengalami kesulitan memahami materi pada bab *Digestion of Food*, terutama pada submateri enzim, sistem pencernaan, dan absorpsi dan defekasi dengan persentase kesulitan secara berurutan yaitu 66%, 31.9%, dan 52.1%. Peserta didik sulit memahami materi pada submateri tersebut karena beberapa konsep bersifat abstrak, seperti enzim, termasuk mengidentifikasi nama-nama enzim yang bekerja di mulut, lambung dan usus halus; bentuk-bentuk enzim, dan mekanisme kerja enzim. Selain itu, ditemukan pula kesulitan siswa dalam memahami proses absorpsi yang terjadi pada usus halus.


Berdasarkan wawancara tertulis, sebanyak 91.5% peserta didik kelas VIII SMPS Pelita Cemerlang Pontianak juga memiliki laptop/komputer yang dapat digunakan untuk pembelajaran online di rumah. Sebanyak 90.4% peserta didik juga terbiasa membuka website atau melakukan browsing melalui laptop/komputer. Sebanyak 90.4% peserta didik juga sudah menggunakan laptop/komputer untuk belajar. Hal ini sesuai dengan karakteristik peserta didik sebagai Generasi Z yang dekat penggunaan teknologi. Generasi Z (1995-2012) juga dikenal dengan native digital karena mereka sejak kecil sudah hidup ditemani dengan teknologi digital dengan keberadaan smartphone, laptop, TV dan lain sebagainya (Pujiono, 2021).

Volume x, Issue y, Month Year; Page, xx-yy Email: bioscientist@undikma.ac.id

Berdasarkan penelitian Szymkowiak, Melović, Dabić, Jeganathan, & Kundi (2021) yang dilakukan pada 498 responden (anak yang lahir setelah tahun 2000) menunjukkan bahwa responden lebih menyukai pembelajaran yang mengintegrasikan teknologi modern ke dalam kurikulumnya seperti aplikasi *mobile* dan konten video dibandingkan dengan bentuk tradisional. Kondisi ini didukung dengan SMPS Pelita Cemerlang yang tidak membatasi peserta didik untuk menggunakan gawai selama proses pembelajaran apabila dibutuhkan dan seizin guru yang mengampu pelajaran. Dengan demikian, karakteristik peserta didik sudah sesuai dengan kebutuhan apabila multimedia interaktif ini diterapkan dalam proses pembelajaran di sekolah.

Selanjutnya, peneliti melakukan analisis tugas yaitu menganalisis kurikulum yang digunakan di SMPS Pelita Cemerlang. SMPS Pelita Cemerlang Pontianak menerapkan kurikulum *Cambridge* yang diintegrasikan dengan kurikulum K-13. Selanjutnya peneliti melakukan analisis konsep, yaitu menganalisis isi materi yang dimuat pada media pembelajaran yang terkait dengan KD dan indikator pembelajaran pada penelitian ini. Isi materi pada media pembelajaran disajikan dalam peta konsep berikut.

Gambar 2. Peta konsep materi yang disajikan dalam multimedia pembelajaran yang dikembangkan

(Modifikasi Forbes, et al, 2019, h.3).

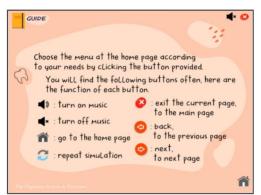
Email: bioscientist@undikma.ac.id

Analisis terakhir yaitu analisis tujuan pembelajaran. Setelah mempelajari materi ini peserta didik diharapkan dapat menjelaskan bagaimana enzim bekerja sebagai katalis biologi; peserta didik dapat mendeskripsikan eksperimen untuk mendemonstrasikan aktivitas enzim; peserta didik dapat menjelaskan proses pencernaan; peserta didik dapat mengenali organ-organ utama sistem pencernaan; peserta didik dapat menyebutkan nama enzim dan produk yang terlibat di setiap tahap pencernaan; peserta didik dapat memahami bagaimana usus halus beradaptasi untuk penyerapan, termasuk struktur vili; dan peserta didik dapat memahami proses defekasi.

Tahap kedua yaitu tahap perancangan (design). Pada tagap perancangan, dilakukan pemilihan media, pemilihan format dan desain awal media. Pemilihan media dilakukan untuk mengidentifikasi media pembelajaran yang relevan dengan karakteristik materi dan sesuai dengan kebutuhan peserta didik. Media dipilih untuk menyesuaikan analisis peserta didik, analisis konsep, analisis tugas, dan karakteristik target pengguna. Hal ini berguna untuk membantu peserta didik dalam pencapaian kompetensi inti dan kompetensi dasar yang diharapkan. Pemilihan format dilakukan pada langkah awal. Pemilihan format dilakukan agar format yang dipilih sesuai dengan materi pembelajaran. Pemilihan bentuk penyajian disesuaikan dengan media pembelajaran yang digunakan. Desain awal media pembelajaran meliputi desain *layout*, gambar, dan tulisan. Rancangan media pembelajaran yang telah dibuat peneliti kemudian diberi masukan oleh dosen pembimbing. Masukan dosen pembimbing akan digunakan sebagai bahan revisi. Rancangan ini merupakan Draf I dari media pembelajaran. Desain media dilakukan dengan beberapa langkah yaitu pembuatan diagram informasi aplikasi, pembuatan storyboard, pembuatan desain aplikasi, import desain aplikasi ke HTML5 Canvas, pembuatan animasi, penambahan kode interaksi Javascript pada HTML5 Canvas, dan publikasi aplikasi.

Berikut ini contoh tampilan multimedia interaktif pada beberapa bagian.

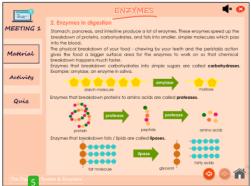
Gambar 3. Impelementasi halaman utama (mainpage)


Email: bioscientist@undikma.ac.id

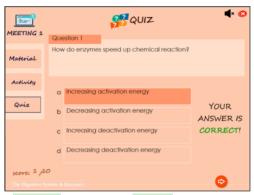
Gambar 4. Implementasi halaman pengenalan (introduction page)

Gambar 5. Implementasi halaman menu (homepage)

Gambar 6. Implementasi halaman petunjuk navigasi (guidepage)



Volume x, Issue y, Month Year; Page, xx-yy


Email: bioscientist@undikma.ac.id

Gambar 7. Implementasi halaman pembuka pada meeting 1

Gambar 8. Implementasi halaman materi

Gambar 9. Implementasi halaman evaluasi (quiz)

Tahap ketiga yaitu tahap pengembangan (*development*). Pada tahap pengembangan, dilakukan validasi media dan uji reliabilitas media. Validasi media berfungsi untuk memvalidasi isi materi dalam media dan memvalidasi media itu sendiri sebelum diperoleh hasil akhir. Setelah dilakukan penilaian oleh 5 orang

Volume x, Issue y, Month Year; Page, xx-yy Email: bioscientist@undikma.ac.id

validator yang telah dipilih secara *purposive sampling*, peneliti melanjutkan penelitian dengan memperbaiki **S**evisi) multimedia interaktif sesuai dengan masukan atau saran dari validator. Hasil dari validasi ini digunakan sebagai bahan perbaikan untuk media yang dikembangkan. Setelah draf I divalidasi dan direvisi, maka dilanjutkan dengan uji reliabilitas m

Uji validasi dilakukan terhadap 4 aspek yaitu aspek kelayakan isi materi, aspek kebahasaan, aspek penyajian, dan aspek karakteristik multimedia interaktif yang dimodifikasi dari Yamasari (2010). Berikut komponen-komponen di setiap aspek penilaian validasi.

Tabel 2. Aspek dan komponen penilaian validasi multimedia interaktif

No	Aspek	Komponen						
1	Kelayakan isi materi	Kesesuaian materi dengan Kompetensi Dasar (KD) dan						
		tujuan pembelajaran						
		Keruntutan penyajian materi pada multimedia interaktif						
2	Kebahasaan	sesuaian bahasa pada multimedia interaktif						
		Konsistensi penggunaan istilah, simbol, lambang						
		Ketepatan penulisan nama ilmiah dan penebalan kata-kata						
		penting						
3	Penyajian	Kejelasan tujuan pembelajaran pada multimedia						
		pembelajaran						
		Kelengkapan informasi pada multimedia pembelajaran						
		Penyajian multimedia interaktif ditampilkan dengan menarik						
		Kemudahan penggunaan multimedia interaktif						
		Ketersediaan petunjuk penggunaan						
		Kesesuaian tulisan, warna, dan gambar/ animasi						
4	Karakteristik multimedia							
	interaktif	Interaktivitas						

Data hasil analisis validasi multimedia interaktif dari 5 validator dapat dilihat pada table berikut.

Tabel 3. Hasil analisis validasi multimedia interaktif

			Validator ke-					Nilai	Ket.
Aspek		Komponen	1	2	3	4	5	V	Valid
Kelayakan isi materi	1.	Kesesuaian materi dengan Kompetensi Dasar (KD) dan tujuan pembelajaran		5	5	4	5	0.95	Valid
	2.	Keruntutan penyajian materi pada multimedia interaktif	5	5	5	5	5	1	Valid
Kebahasaa n	3.	Kesesuaian bahasa pada multimedia interaktif	5	5	5	5	5	1	Valid

Volume x, Issue y, Month Year; Page, xx-yy Email: bioscientist@undikma.ac.id

[8]86[868[800]868]									
			Validator ke-				Nilai	Ket.	
Aspek		Komponen	1	2	3	4	5	V	Valid
	4.	Konsistensi penggunaan istilah, simbol, lambang	4	4	5	5	4	0.85	Valid
	5.	Ketepatan penulisan nama ilmiah dan penebalan kata-kata penting	4	5	4	4	4	0.80	Valid
Penyajian	6.	Kejelasan tujuan pembelajaran pada multimedia pembelajaran	5	5	5	5	5	1	Valid
	7.	Kelengkapan informasi pada multimedia pembelajaran	5	5	5	5	5	1	Valid
	8.	Penyajian multimedia interaktif ditampilkan dengan menarik	5	5	5	5	5	1	Valid
	9.	Kemudahan penggunaan multimedia interaktif	5	5	5	5	5	1	Valid
	10.	Ketersediaan petunjuk penggunaan	4	4	5	5	4	0.85	Valid
	11.	Kesesuaian tulisan, warna, dan gambar/ animasi	5	5	4	5	4	0.9	Valid
Karakteris tik	12.	Kelengkapan jenis media	5	5	5	5	5	1	Valid
multimedi a interaktif	13.	Interaktivitas	4	4	5	4	4	0.80	Valid
		Rata-rata Nilai V						0.93	Valid

Keterangan:

Nilai V = nilai validasi

Hasil analisis validasi multimedia interaktif menunjukkan bahwa dari keempat aspek yang dinilai yaitu aspek kelayakan isi materi, aspek kebahasaan, aspek penyajian, dan aspek karakteristik multimedia interaktif, diperoleh rata-rata

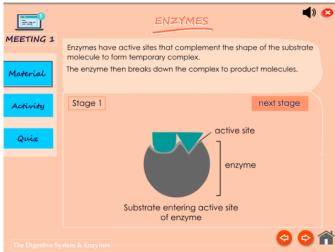
Email: bioscientist@undikma.ac.id

validitas sebesar 0.93 yang menandakan bahwa media yang dikembangkan dalam

Pada aspek kelayakan isi materi, terdapat dua komponen penilaian yaitu kesesuaian materi dengan kompetensi dasar (KD) dan tujuan pembelajaran dengan nilai validasi 0.95 dalam kategori valid dan keruntutan penyajian materi pada multimedia interaktif dengan nilai validasi 1 dalam kategori valid. Menurut Peraturan Menteri Pendidikan dan Kebudayaan Republik Indonesia No.146 tahun 2014, Kompetensi Dasar merupakan tingkat kemampuan dalam konteks muatan pembelajaran, tema pembelajaran, dan pengalaman belajar yang mengacu pada Kompetensi Inti. Sedangkan tujuan pembelajaran adalah pernyataan yang mendeskripsikan tentang kemampuan/kompetensi yang diinginkan untuk dikuasai siswa (Endarta, 2016). Oleh karena itu, tujuan pembelajaran juga berfungsi sebagai panduan siswa untuk mengetahui apa yang diharapkan dari pembelajaran tersebut. Dengan adanya multimedia pembelajaran yang sesuai dengan KD dan tujuan pembelajaran, maka hasil pembelajaran juga diharapkan sesuai dengan tujuan yang diharapkan untuk dicapai peserta didik. Keruntutan penyajian materi juga perlu dilakukan untuk membantu peserta didik mengkonstruk pemahamannya dengan baik.

Pada aspek kebahasaan, terdapat tiga komponen penilaian. Komponen kesesuaian bahasa pada multimedia interaktif memperoleh nilai validasi 1 kategori valid. Komponen konsistensi penggunaan istilah, symbol dan lambang memperoleh nilai validasi 0.85 kategori valid. Komponen ketepatan penulisan nama ilmiah dan penebalan kata-kata penting memperoleh nilai validasi 0.80 kategori valid. Multimedia interaktif ini telah disusun dengan kata-kata dan istilah yang telah sesuai dengan PUEBI agar dapat dipahami oleh penggunanya (peserta didik dan guru) dengan baik. Penulisan yang benar sesuai PUEBI juga diharapkan dapat mengenalkan dan membiasakan peserta didik dengan ejaan yang baik sehingga dapat mengatasi masalah penggunaan ejaan yang salah dalam bidang pendidikan di masa mendatang, salah satunya seperti penulisan referensi dalam penelitian (Ngazizah & Nugraheni, 2022).

Pada aspek penyajian, terdapat enam komponen penilaian. Komponen kejelasan tujuan pembelajaran pada multimedia pembelajaran memperoleh nilai validasi 1 kategori valid. Komponen kelengkapan informasi pada multimedia pembelajaran memperoleh nilai validasi 1 kategori valid. Komponen penyajian multimedia interaktif ditampilkan dengan menarik memperoleh nilai validasi 1 kategori valid. Komponen kemudahan penggunaan multimedia interaktif memperoleh nilai validasi 1 kategori valid. Komponen ketersediaan petunjuk penggunaan memperoleh nilai validasi 0.85 kategori valid. Komponen kesesuaian tulisan, warna, dan gambar/animasi memperoleh nilai validasi 0.9 kategori valid. Media pembelajaran adalah salah satu komponen yang sangat penting untuk menunjang proses pembelajaran karena media pembelajaran dapat menarik dapat meningkatkan minat belajar peserta didik. Pemilihan pembelajaran yang tepat juga dapat membantu peserta didik untuk memahami materi pembelajaran yang disampaikan. Multimedia interaktif yang dikembangkan pada penelitian ini tepat untuk peserta didik yang diteliti karena mereka mengalami kesulitan dalam memahami enzim dan mekanisme kerjanya yang bersifat abstrak melalui paparan


Bioscientist : Jurnal Ilmiah Biologi

E-ISSN 2654-4571; P-ISSN 2338-5006 Volume x, Issue y, Month Year; Page, xx-yy Email: hioscientist@undikma.ac.id

video singkat. Multimedia interaktif ini memuat simulasi tahap pertahap bagaimana enzim bekerja dalam memecah substrat dalam bentuk animasi bergerak dan berubah warna. Animasi ini juga dibuat untuk dapat diulang pertahapnya atau diulang dari awal simulasi, sehingga memudahkan peserta didik memahami dan mengingat keseluruhan proses tersebut. Pengulangan merupakan suatu Langkah penting dalam menciptakan daya ingat dalam jangka panjang (Rosidi, 2015). Berikut tangkapan layar dari simulasi yang dipaparkan.

Gambar 10. Simulasi mekanisme kerja enzim dalam memecah substrat tahap 1

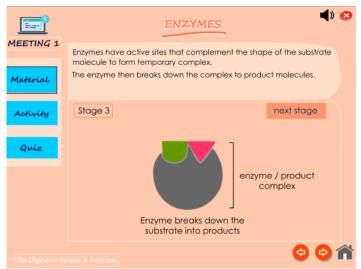
Gambar 11 Simulasi mekanisme kerja enzim dalam memecah substrat tahap 2

Bioscientist : Jurnal Ilmiah Biologi

E-ISSN 2654-4571; P-ISSN 2338-5006 Volume x, Issue y, Month Year; Page, xx-yy Email: hioscientist@undikma.ac.id

MEETING 1

Enzymes have active sites that complement the shape of the substrate molecule to form temporary complex.


The enzyme then breaks down the complex to product molecules.

Stage 2

Renzyme / substrate complex

Enzyme changes shape slightly as substrate binds

Gambar 12. Simulasi mekanisme kerja enzim dalam memecah substrat tahap 3

Gambar 13. Simulasi mekanisme kerja enzim dalam memecah substrat tahap 4

Volume x, Issue y, Month Year; Page, xx-yy Email: bioscientist@undikma.ac.id

MEETING 1

Enzymes have active sites that complement the shape of the substrate molecule to form temporary complex.

The enzyme then breaks down the complex to product molecules.

Stage 4

Product 2

Products leaving active site of enzyme

Gambar 14. Simulasi mekanisme kerja enzim dalam memecah substrat tahap 5

Selain simulasi bergerak dan berubah warna, multimedia interaktif yang dikembangkan ini juga memuat aktivitas inti yang disematkan (*embed*) dari sumber belajar lain. Pada submateri enzim pencernaan, multimedia interaktif menyematkan (*embed*) aktivitas inti *virtual laboratorium* dari Amrita Online Lab (2015) yaitu eksperimen virtual uji amilasi saliva pada pati. Eksperimen ini diharapkan dapat membantu peserta didik memahami pengaruh enzim amilase pada pemecahan pati. Pada submateri sistem pencernaan, aktivitas intinya yaitu melabel organ-organ pada sistem pencernaan menggunakan lembar kerja online via liveworksheets.com. Pada submateri absorpsi dan defekasi, peserta didik disediakan aktivitas inti berupa pengamatan model absorpsi makanan pada vili yang disematkan dari NetLogo (Novak, 2019; Wilensky, 1999). Tujuan dari adanya simulasi dan aktivitas inti ini diharapkan dapat memberikan pengalaman konkret untuk peserta didik walaupun pembelairan dilakukan secara daring.

Pada aspek karakteristik multimedia interaktif, terdapat dua komponen penilaian. Komponen kelengkapan jenis media memperoleh nilai validasi 1 kategori valid. Komponen interaktivitas memperoleh nilai validasi 0.80 kategori valid. Media yang dimuat dalam multimedia interaktif berupa teks, gambar, video, suara, animasi dan unsur kinestetik yang dikemas dalam sebuah website menjadi sebuah kelebihan multimedia interaktif itu sendiri (Sari, 2019). Berbagai jenis media yang dimuat dalam suatu multimedia diperlukan untuk menyesuaikan kebutuhan gaya belajar peserta didik yang berbeda-beda. Menurut Setianingrum (2017), peserta didik dengan gaya visual belajar melalui indera penglihatannya, sehingga teks, gambar, grafik, animasi dan video sesuai untuk mereka karena menyajikan tampilan visual. Peserta didik dengan gaya belajar auditori belajar melalui indera pendengarannya, sehingga *sound* (suara) digunakan dalam bagian dari multimedia. Peserta didik dengan gaya belajar kinestetik lebih mudah belajar dengan bergerak, menyentuh, dan melakukan sesuatu yang memberikan informasi

Volume x, Issue y, Month Year; Page, xx-yy Email: bioscientist@undikma.ac.id

tertentu sehingga dia dapat mengingatnya, sehingga multimedia yang bersifat interaktif menjadi sesuai dengan kebutuhan ini. Dengan demikian, apabila pengajar menerapkan multimedia interaktif, tidak perlu lagi menyesuaikan dengan gaya belajar peserta didik, karena multimedia interaktif sudah mencakup 3 gaya belajar tersebut.

Setelah melakukan validasi, penelita menganalisis reliabilitas *ICC* menggunakan program SPSS *Statistic*. Berikut hasil uji ICC pada penelitian ini.

Tabel 4. Hasil Analisa uji Koefisien Korelasi Intra Kelas

Intraclass Correlation Coefficient							
	95% Confidence Interval F Test with True Value 0						
	Intraclass		Upper				
	Correlation ^b	Lower Bound	Bound	Value	df1	df2	Sig
Single Measures	.427a	.185	.715	4.681	12	48	<.001
Average Measures	.788°	.531	.926	4.681	12	48	<.001

Berdasarkan hasil Analisa di atas, uji reliabilitas memperoleh nilai 0.788. Sesuai interpretasi oleh Rosner (dalam Zaki, 2017), nilai reliabilitas ini telah melebihi 0.75, yang menunjukkan reliabilitas termasuk ke dalam kategori *excellent*. Oleh karena itu, multimedia interaktif ini layak untuk digunakan dalam pembelajaran.

SIMPULAN

Hasil validasi media pembelajaran berupa multimedia interaktif mencapai nilai minimal valid Aiken's V dan termasuk kategori valid sehingga multimedia interaktif ini layak digunakan sebagai media pembelajaran pada submateri enzim dan sistem pencernaan di kelas VIII SMP. Hasil reliabilitas ICC multimedia interaktif juga mencapai kategori *excellent*. Dengan demikian, dapat disimpulkan bahwa multimedia interaktif ini valid dan layak digunakan dalam pembelajaran.

SARAN

Penelitian ini hanya dilakukan hingga tahap ketiga yaitu development karena adanya keterbatasan waktu. Oleh karena itu disarankan kepada peneliti selanjutnya untuk melakukan tahap keempat yaitu penyebaran (disseminate) agar produk penelitian ini dapat disebarluaskan dan dimanfaatkan oleh pihak yang membutuhkan.

UCAPAN TERIMA KASIH

Peneliti mengucapkan terimakasih kepada semua pihak yang telah memdukung penyelesaian penelitian ini. Kritik dan saran dapat diberikan kepada peneliti untuk pengembangan multimedia interaktif yang lebih baik.

Volume x, Issue y, Month Year; Page, xx-yy Email: bioscientist@undikma.ac.id

DAFTAR RUJUKAN

- Amrita Online Lab. (2015). *Action of Salivary Amylase on Starch*. Diakses di amrita.olabs.edu.in/, pada tanggal 5 Maret 2022.
- Dzikro, A. Z. T. & Dwiningsih, K. (2021). Kelayakan Media Pembelajaran Berbasis Laboratorium Virtual pada Sub Materi Kimia Unsur Periode Ketiga. *Chemistry Education Practice*, 4(2), 160 170. https://doi.org/10.29303/cep.v4i2.2389
- Endarta. (2016). Retrieved June 5, 2024, from Literasi Pedagogi Teknologi. Interacwebsite: https://duniapendidikan.putrautama.id/tujuan-pembelajaran/
- Forbes, D. et al. (2019). *Amazing Science Student Book Lower Secondary Year* 8. Malaysia: Oxford Publishing.
- Hendryadi. (2017). Validitas Isi: Tahap Awal Pengembangan Kuesioner. *Jurnal Riset Manajemen dan Bisnis*. 2(2), 169-178.
- Hidayati, N. (2017). Efektivitas Pembelajaran Menggunakan Multimedia Interaktif (Adobe Flash Cs6) Terhadap Hasil Belajar Matematika Siswa Kelas V SDN Jurug Sewon. *Trihayu: Jurnal Pendidikan Ke-SD-an*, 3(3),169-172.
- Marinda, L. (2020). Teori perkembangan kognitif Jean Piaget dan problematikanya pada anak usia sekolah dasar. *An-Nisa' Jurnal Kajian Perempuan dan Keislaman*, 13(1), 116-152. Diunduh di https://media.neliti.com/media/publications/340203-teori-perkembangan-kognitif-jean-piaget-00d2756c.pdf
- Munir. (2012). Multimedia: Konsep & Aplikasi dalam Pendidikan. Bandung: Penerbit Alfabeta.
- Mustaqim, I & Prianto, E. (2015). *Modul Pelatihan Media Pembelajaran Adobe Flash*. Yogyakarta: Univ. Negeri Yogyakarta.
- Ngazizah, I.N. & Nugraheni, A.S. (2022). PUEBI Daring sebagai Alternatif Pembelajaran Ejaan Bahasa Indonesia di SMAN 1 Tunjungan. *Caraka*. 8(2):120-138. https://jurnal.ustjogja.ac.id/index.php/caraka/article/download/10597/510
- 5 Novak, M. (2019). OpenSciEd Villi Food Absportion. http://www.openscied.org/
- OpenSciEd Middle School Curriculum series.

 Oktavia, R. (2020). Pengaruh multimedia interaktif pada pembelajaran biologi jaringan tumbuhan terhadap keaktifan dan pengetahuan siswa SMAN 6 Darul Makmur. Edunesia: Jurnal Ilmiah Pendidikan, 1(3),73-81.
- Peraturan Menteri Pendidikan dan Kebudayaan Republik Indonesia Nomor 146
 Tahun 2014 tentang Kurikulum 2013 Pendidikan Anak Usia Dini. 2014.
 Jakarta: Departemen Pendidikan dan Kebudayaan https://jdih.kemdikbud.go.id/sjdih/siperpu/dokumen/salinan/Permendikbud%20Nomor%20146%20Tahun%202014.pdf
- Pujiono, A. (2021). Media Sosial sebagai Media Pembelejaran bagi Generasi Z. *Didaché: Journal of Christian Education*. 2(1): 1-19. https://doi.org/10.46445/djce.v2i1.396

Bioscientist: Jurnal Ilmiah Biologi

E-ISSN 2654-4571; P-ISSN 2338-5006 Volume x, Issue y, Month Year; Page, xx-yy Email: hioscientist@undikma.ac.id

- Rosidi, A. (2015). Menguatkan Daya Ingat dalam Pembelajaran. *Educazione* . 3(1): 62-71.
 - https://ejurnal.uij.ac.id/index.php/EDU/article/download/141/137/273
- Sari, P. (2019). Analisis Terhadap Kerucut Pengalaman Edgar Dale dan Keragaman Gaya Belajar untuk Memilih Media yang Tepat dalam Pembelajaran. *Jurnal Manajemen Pendidikan*, 1(1), 42-57. Diunduh di http://ejournal.insud.ac.id/index.php/mpi/index.
- Setianingrum. (2017). Penggunaan variasi media ajar terhadap 3 gaya belajar siswa dalam pembelajaran bahasa jepang. *Jurnal Pendidikan dan Pengajaran Bahasa Jepang*, 2(1),1-8.
- Szymkowiak, A., Melović, B., Dabić, M., Jeganathan, K., & Kundi, G. S. (2021). Information technology and Gen Z: The Role of Teachers, the Internet, and Technology in the Education of Young People. *Technology in Society*. 65, 101565. https://doi.org/10.1016/j.techsoc.2021.101565.
- Urry, L. Cain, M., Wasserman, S., Minorsky, P., & Reece, J. (2016). *Campbell Biology Eleventh Edition*. New York: Pearson Higher Education.
- Wilensky, U. (1999). NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL
- Yamasari, Y. (2010, 4 Agustus). Pengembangan Media Pembelajaran Matematika Berbasis ICT yang Berkualitas, *Makalah Diseminarkan Pada Seminar Nasional Pascasarjana X ITS, Surabaya*.
- Zaki, R. (2017). Validation of Instrument Measuring Continuous Variable in Medicine. Dalam *Advances in Statistical Methodologies and Their Application to Real Problems*. InTech. https://doi.org/10.5772/66151

ARTIKEL FARAH PUSPITA F1071151022 - Bioscientist.docx

ORIGINALITY REPORT

_	3% ARITY INDEX	12% INTERNET SOURCES	6% PUBLICATIONS	10% STUDENT PAPERS
PRIMAF	RY SOURCES			
1	Submitt Student Pape		as Tanjungpura	5%
2	Submitt Student Pape	ed to Universit	as Samudra	2%
3	Submitt Student Pape		as Negeri Jakar	2 _%
4	e-journa Internet Sour	ıl.undikma.ac.id	d	1%
5	eprints.	uny.ac.id		1%
6	jurnal.ra	idenfatah.ac.id		1 %
7	zombied Internet Sour			1 %
8	ojs.bada Internet Sour	nbahasa.kemo	dikbud.go.id	1 %

Exclude quotes On Exclude matches < 1%

Exclude bibliography On